引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1218次   下载 340 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Cavity-Enhanced Saturation Spectroscopy of Molecules with sub-kHz Accuracy
Tian-peng Hua,Yu Robert Sun,Jin Wang,Chang-le Hu,Lei-gang Tao,An-wen Liu,Shui-ming Hu*
1.Hefei National Laboratory for Physical Sciences at the Microscale, iChem Center, University of Science and Technology of China, Hefei 230026, China;2.CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract:
Saturation spectroscopy is frequently used to obtain sub-Doppler measurement of atomic and molecular transitions. Optical resonant cavities can be used to enhance the effective absorption path length, and the laser power inside the cavity as well to saturate very weak ro-vibrational transitions of molecules. Three different cavity-enhanced methods, cavity enhanced absorption spectroscopy, cavity ring-down spectroscopy, and noise-immune cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS), were compared by measuring the Lamb dip of a C2H2 line at 1.4 μm using a cavity with a finesse of 120000. The center of the line was determined by different cavity-enhanced methods, each giving a sub-kHz (δv/v≈10-12) statistical uncertainty. The sensitivity and precision of different methods were analyzed and compared. As demonstrated in this study, the NICE-OHMS method is the most sensitive one, but more investigation on the systematic uncertainty is necessary before its application in metrology studies toward a sub-kHz accuracy.
Key words:  Precision spectroscopy, Metrology, Cavity enhanced
FundProject:
亚千赫兹精度的腔增强分子饱和吸收光谱
华天鹏1, 孙 羽2,3, 王 进2,3, 胡常乐1, 陶雷刚1, 刘安雯1, 胡水明*2,3
1.中国科学技术大学合肥微尺度物质科学国家研究中心,合肥 230026;2.中国科学技术大学合肥微尺度物质科学国家研究中心,合肥 230026;3.中国科学院量子信息与量子科技创新研究院,合肥 230026
摘要:
饱和吸收光谱法常被用于原子和分子跃迁的亚多普勒测量。光学谐振腔除了可增强有效吸收光程,还能够增加腔内的激光功率来饱和非常弱的分子振转跃迁. 本文利用精细度达120000的谐振腔,通过腔增强光谱、腔衰荡光谱、噪声免疫腔增强光外差分子光谱这三种不同的腔增强方法,测量1.4 μm处的C2H2分子兰姆凹陷. 采用不同的腔增强方法确定吸收谱线中心,均给出了亚千赫兹的统计不确定度. 并分析比较了不同方法的灵敏度和精度,噪声免疫腔增强光外差分子光谱是最灵敏的方法,但如果期望利用它实现亚千赫兹精度的计量应用,还需要对该方法中的系统误差进行更多的研究.
关键词:  乙炔,腔增强光谱, 光腔衰荡光谱,噪声免疫腔增强光外差分子光谱,饱和吸收
DOI:10.1063/1674-0068/cjcp1812272
分类号: