引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 78次   下载 46  
分享到: 微信 更多
The low-bias conducting mechanism of diarylethene isomers: a first-principle study
ckwang
Department of physics, Shandong normal university
Abstract:
The structure-property relationship of DAE-derivative (C5F-4Py) molecular isomers which involve ring-closed status and ring-open status is investigated by employing non-equilibrium Green’s function formalism combined with density functional theory. Molecular junctions are formed by the isomers connecting to Au (111) electrodes through the flanked pyridine groups. The difference of electronic structures caused by different geometry structures for the two isomers, especially the alternative single bond and double bond in ring-closed molecule, contributes the remarkable different low-bias conductance values. The LUMO orbitals of isomers are mainly channels to transport electron. In addition, the more electrons transferred to ring-closed molecular junction in equilibrium condition drop down the LUMO orbitals closer to the Fermi energy which may be to contribute larger conductance value at Fermi level. Our findings are help to understand the mechanism of the low-bias conducting mechanism of and are conductive to design of high performance molecular switching based on DAE or DAE-derivatives molecules.
Key words:  molecular electronics, molecular switching, density functional theory, non-equilibrium Green’s function
FundProject:
Supplymentary:   FMOenergynew9.tif  structue.tif  tranclosefullsmall.tif  tranopenfullsmall.tif
The low-bias conducting mechanism of diarylethene isomers: a first-principle study
王传奎
Department of physics, Shandong normal university
摘要:
The structure-property relationship of DAE-derivative (C5F-4Py) molecular isomers which involve ring-closed status and ring-open status is investigated by employing non-equilibrium Green’s function formalism combined with density functional theory. Molecular junctions are formed by the isomers connecting to Au (111) electrodes through the flanked pyridine groups. The difference of electronic structures caused by different geometry structures for the two isomers, especially the alternative single bond and double bond in ring-closed molecule, contributes the remarkable different low-bias conductance values. The LUMO orbitals of isomers are mainly channels to transport electron. In addition, the more electrons transferred to ring-closed molecular junction in equilibrium condition drop down the LUMO orbitals closer to the Fermi energy which may be to contribute larger conductance value at Fermi level. Our findings are help to understand the mechanism of the low-bias conducting mechanism of and are conductive to design of high performance molecular switching based on DAE or DAE-derivatives molecules.
关键词:  molecular electronics, molecular switching, density functional theory, non-equilibrium Green’s function
DOI:
分类号: