2017 Vol. 30, No. 4

Content
Contents
2017, 30(4): 0-0.
Chinese abstract
Chinese Abstracts
2017, 30(4): I-Ⅱ.
Article
Molecular self-assembly is extremely important in many fields, but the characterization of their corresponding intermolecular interactions is still lacking. The C-H stretching Raman band can reflect the hydrophobic interactions during the self-assembly process of sodium dodecyl sulfate (SDS) in aqueous solutions. However, the Raman spectra in this region are seriously overlapped by the OH stretching band of water. In this work, vertically polarized Raman spectra were used to improve the detection sensitivity of spectra of C-H region for the first time. The spectral results showed that the first critical micelle concentration and the second critical micelle concentration of SDS in water were 8.5 and 69 mmol/L, respectively, which were consistent with the results given by surface tension measurements. Because of the high sensitivity of vertically polarized Raman spectra, the critical micelle concentration of SDS in a relatively high concentration of salt solution could be obtained in our experiment. The two critical concentrations of SDS in 100 mmol/L NaCl solution were recorded to be 1.8 and 16.5 mmol/L, respectively. Through comparing the spectra and surface tension of SDS in water and in NaCl solution, the self-assembly process in bulk phase and at interface were discussed. The interactions among salt ions, SDS and water molecules were also analyzed. These results demonstrated the vertically polarized Raman spectra could be employed to study the self-assembly process of SDS in water.
On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O22- and O2- were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UVVis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420-440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NaNO3 are also obtained and compared with that of HTS.
The photoionization and photodissociation of 1,4-dioxane have been investigated with a reflectron time-of-flight photoionization mass spectrometry and a tunable vacuum ultraviolet synchrotron radiation in the energy region of 8.0-15.5 eV. Parent ion and fragment ions at m/z 88, 87, 58, 57, 45, 44, 43, 41, 31, 30, 29, 28 and 15 are detected under supersonic conditions. The ionization energy of DX as well as the appearance energies of its fragment ions C4H7O2+, C3H6O+, C3H5O+, C2H5O+, C2H4O+, C2H3O+, C3H5+, CH3O+, C2H6+, C2H5+/CHO+, C2H4+ and CH3+ was determined from their photoionization efficiency curves. The optimized structures for the neutrals, cations, transition states and intermediates related to photodissociation of DX are characterized at the B3LYP/6-31+G(d,p) level and their energies are obtained by G3B3 method. Possible dissociative channels of the DX are proposed based on comparison of experimental AE values and theoretical predicted ones. Intramolecular hydrogen migrations are found to be the dominant processes in most of the fragmentation pathways of 1,4-dioxane.
The mixture of graphene oxide (GO) and dye molecules may provide some new applications due to unique electronic, optical, and structural properties. Methylene blue (MB), a typical anionic dye, can attach on GO via π-π stacking and electrostatic interaction, and the molecule removal process on GO has been observed. However, it remains unclear about the ultrafast carrier dynamics and the internal energy transfer pathways of the system which is composed of GO and MB. We have employed ultrafast optical pump-probe spectroscopy to investigate the excited dynamics of the GO-MB system dispersed in water by exciting the samples at 400 nm pump pulse. The pristine MB and GO dynamics are also analyzed in tandem for a direct comparison. Utilizing the global analysis to fit the measured signal via a sequential model, five lifetimes are acquired:(0.61±0.01) ps, (3.52±0.04) ps, (14.1±0.3) ps, (84±2) ps, and (3.66±0.08) ns. The ultrafast dynamics corresponding to these lifetimes was analyzed and the new relaxation processes were found in the GO-MB system, compared with the pristine MB. The results reveal that the functionalization of GO can alter the known decay pathways of MB via the energy transfer from GO to MB in system, the increased intermediate state, and the promoted energy transfer from triplet state MB to ground state oxygen molecules dissolved in aqueous sample.
In this work we construct a novel dissipaton-equation-of-motion (DEOM) theory in quadratic bath coupling environment, based on an extended algebraic statistical quasi-particle approach. To validate the new ingredient of the underlying dissipaton algebra, we derive an extended Zusman equation via a totally different approach. We prove that the new theory, if it starts with the identical setup, constitutes the dynamical resolutions to the extended Zusman equation. Thus, we verify the generalized (non-Gaussian) Wick's theorem with dissipatons-pair added. This new algebraic ingredient enables the dissipaton approach being naturally extended to nonlinear coupling environments. Moreover, it is noticed that, unlike the linear bath coupling case, the influence of a non-Gaussian environment cannot be completely characterized with the linear response theory. The new theory has to take this fact into account. The developed DEOM theory manifests the dynamical interplay between dissipatons and nonlinear bath coupling descriptors that will be specified. Numerical demonstrations will be given with the optical line shapes in quadratic coupling environment.
Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N-oxides with different energetic substituent groups (-NH2, -N3, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH-and -NH-NH-are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -N3, -CH2-CH2-, and -N=N-are inappropriate.
High volumetric power density (VPD) is the basis for the commercial success of micro-tubular solid oxide fuel cells (mtSOFCs). To find maximal VPD (MVPD) for anode-supported mtSOFC (as-mtSOFC), the effects of geometric parameters on VPD are analyzed and the anode thickness, tan, and the cathode length, lca, are identified as the key design parameters. Thermo-fluid electrochemical models were built to examine the dependence of the electrical output on the cell parameters. The multiphysics model is validated by reproducing the experimental I-V curves with no adjustable parameters. The optimal lca and the corresponding MVPDs are then determined by the multiphysics model for 20 combinations of rin, the inner tube radius, and tan. And all these optimization are made at 1073.15 K. The results show that:(i) significant performance improvement may be achieved by geometry optimization, (ii) the seemingly high MVPD of 11 and 14 W/cm3 can be easily realized for as-mtSOFC with single-and double-terminal anode current collection, respectively. Moreover, the variation of the area specific power density with lca2(2 mm, 40 mm) is determined for three representative (rin, tan) combinations. Besides, it is demonstrated that the current output of mtSOFC with proper geometric parameters is comparable to that of planar SOFC.
Laser-assisted Stark deceleration scheme was proposed to decelerate the high-field-seeking molecule ICl in its rovibronic ground state. However, the laser intensity of 1.0×1010 W/cm2 is hard to realize in experiment. The time-of-flight signals of HC2n+1N (n=2, 3 and 4) by three-dimensional Monte-Carlo simulation suggest that deceleration of such molecules is more feasible experimentally as only one-tenth laser intensity is needed.
Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structureactivity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
Despite the efficacy of imatinib therapy in chronic myelogenous leukemia, the development of drug-resistant Abl mutants, especially the most difficult overcoming T315I mutant, makes the search for new Abl T315I inhibitors a very interesting challenge in medicinal chemistry. In this work, a multistep computational framework combining the three dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, molecular dynamics (MD) simulation and binding free energy calculation, was performed to explore the structural requirements for the Abl T315I activities of benzimidazole/benzothiazole derivatives and the binding mechanism between the inhibitors and Abl T315I. The established 3D-QSAR models exhibited satisfactory internal and external predictability. Docking study elucidated the comformations of compounds and the key amino acid residues at the binding pocket, which were confirmed by MD simulation. The binding free energies correlated well with the experimental activities. The MM-GBSA energy decomposition revealed that the van der Waals interaction was the major driving force for the interaction between the ligands and Abl T315I. The hydrogen bond interactions between the inhibitors and Met318 also played an important role in stablizing the binding of compounds to Abl T315I. Finally, four new compounds with rather high Abl T315I activities were designed and presented to experimenters for reference.
The doping effect of Cu on the self-assembly film of melamine on an Au(111) surface has been investigated with scanning tunneling microscopy (STM). The evaporated Cu adatoms occupy the positions underneath the amino groups and change the hydrogen bonding pattern between the melamine molecules. Accordingly, the self-assembly structure has changed stepwise from a well-defined honeycomb into a track-like and then a triangular structure depending on the amount of Cu adatoms. The interaction between Cu adatom and melamine is moderate thus the Cu adatoms can be released upon mild heating to around 100℃. These findings are different from previous observations of either the coordination assembly or the physically trapped metal adatoms.
The spray-dried spheres within a W/Pt multi-separation can be used to prepare discrete core-shell WC@C/Pt catalysts through a typical carburization production mechanism at 800℃. In contrast with previous studies of the WC/Pt synthesis, the reaction observed here proceeds through an indirect annealing mechanism at 600℃ wherein species diffuse, thereby resulting in core-shell structure, and Pt nanoparticles were successfully dispersed in size/shape and randomly scattered across the in situ produced C spheres. Through direct carburization or at higher initial hydrochloroplatinic acid concentrations, however, complete reaction with core-shell spheres was not observed. Indirect carburization reduces the strain felt by the bonds featuring the larger WC particles and allows the motion of carbon around WC and Pt nanoparticles to be reserved, influencing the electrocatalytic performance and stability toward methanol oxidation.
The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TiN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.
We report a γ-ray irradiation reduction method to prepare MnO/reduced graphene oxide (rGO) nanocomposite for the anode of lithium ion batteries. γ-Ray irradiation provides a clean way to generate homogeneously dispersed MnO nanoparticles with finely tuned size on rGO surface without the use of surfactant. The MnO/rGO composite enables a fully charge/discharge in 2 min to gain a reversible specific capacity of 546 (mA·h)/g which is 45% higher than the theoretical value of commercial graphite anode.
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (IV) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe3O4 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of cinnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.
SnO2 nanofibers were synthesized by electrospinning and modified with Co3O4 via impregnation in this work. Chemical composition and morphology of the nanofibers were systematically characterized, and their gas sensing properties were investigated. Results showed that Co3O4 modification significantly enhanced the sensing performance of SnO2 nanofibers to ethanol gas. For a sample with 1.2 mol% Co3O4, the response to 100 ppm ethanol was 38.0 at 300℃, about 6.7 times larger than that of SnO2 nanofibers. In addition, the response/recovery time was also greatly reduced. A power-law dependence of the sensor response on the ethanol concentration as well as excellent ethanol selectivity was observed for the Co3O4/SnO2 sensor. The enhanced ethanol sensing performance may be attributed to the formation of p-n heterojunctions between the two oxides.
The directional production of benzene is achieved by the current-enhanced catalytic conversion of lignin. The synergistic effect between catalyst and current promotes the depolymerization of lignin and the selective recombinant of the functional groups in the aromatic monomers. A high benzene yield of 175 gbenzene/kglignin was obtained with an excellent selectivity of 92.9 C-mol%. The process potentially provides a promising route for the production of basic petrochemical materials or high value-added chemicals using renewable biomass.