Citation: | Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. DOI: 10.1063/1674-0068/30/cjcp1703055 |
[1] |
X. X. Zhao, S. H. Li, Y. Wang, Y. C. Li, F. Q. Zhao, and S. P. Pang, J. Mater. Chem. A 4, 5495(2016).
|
[2] |
M. Zheng, X. H. Li, H. L. Cui, and R. Z. Zhang, Chin. J. Chem. Phys. 29, 349(2016).
|
[3] |
Q. Wu, W. H. Zhu, and H. M. Xiao, J. Mater. Chem. A 2, 13006(2014).
|
[4] |
J. H. Zhang and J. M. Shreeve, J. Am. Chem. Soc. 136, 4437(2014).
|
[5] |
J. H. Zhang, Q. M. Zhang, T. T. Vo, D. A. Parrish, and J. M. Shreeve, J. Am. Chem. Soc. 137, 1697(2015).
|
[6] |
T. M. Klapötke, P. C. Schmid, S. Schnell, and J. Stierstorfer, J. Mater. Chem. A 3, 2658(2015).
|
[7] |
P. Yin and J. M. Shreeve, Angew. Chem. Int. Ed. 54, 14513(2015).
|
[8] |
C. B. Aakeröy, T. K. Wijethunga, and J. Despe, Chem. Eur. J. 21, 11029(2015).
|
[9] |
C. Y. Zhang, X. G. Xue, Y. F. Cao, J. H. Zhou, A. B. Zhang, H. Z. Li, Y. Zhou, R. J. Xu, and T. Gao CrystEngComm 16, 5905(2014).
|
[10] |
D. Hong, Y. Li, S. Zhu, L. Zhang, and C. Pang, Cent. Eur. J. Energ. Mater. 12, 47(2015).
|
[11] |
Q. H. Zhang and J. M. Shreeve, Angew. Chem. Int. Ed. 53, 2540(2014).
|
[12] |
Y. Shang, B. Jin, R. F. Peng, Q. Q. Liu, B. S. Tan, and Z. C. Guo, J. Zhao, and Q. C. Zhang, Dalton Trans. 45, 13881(2016).
|
[13] |
Q. Yang, X. X. Song, G. W. Zhao, G. L. Yang, L. L. Yang, Q. Wei, G. Xie, S. P. Chen, and S. L. Gao, Eur. J. Inorg. Chem. 31, 5052(2016).
|
[14] |
D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstörfer, Chem. Eur. J. 19, 4602(2013).
|
[15] |
N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstörfer, J. Mater. Chem. 22, 20418(2012).
|
[16] |
B. Yuan, Z. J. Yu, and E. R. Bernstein, J. Phys. Chem. A 119, 2965(2015).
|
[17] |
Q. An, T. Cheng, W. A. Goddard Ⅲ, and S. V. Zybin, J. Phys. Chem. C 119, 2196(2015).
|
[18] |
V. P. Sinditskii, S. A. Filatov, V. I. Kolesov, K. O. Kapranov, A. F. Asachenko, M. S. Nechaev, V. V. Lunin, and N. I. Shishov, Thermochim. Acta 614, 85(2015).
|
[19] |
N. Fischer, L. Gao, T. M. Klapötke, and J. Stierstörfer, Polyhedron 51, 201(2013).
|
[20] |
M. J. Kamlet and S. J. Jacobs, J. Chem. Phys. 48, 23(1968).
|
[21] |
P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and A. Toro-Labbé, Mol. Phys. 107, 2095(2009).
|
[22] |
P. W. Atkins, Physical Chemistry, Oxford: Oxford University Press, (1982).
|
[23] |
E. F. C. Byrd and B. M. Rice, J. Phys. Chem. A 110, 1005(2006).
|
[24] |
M. Pospíšíl, P. Vávra, M. C. Concha, J. S. Murray, and P. Politzer, J. Mol. Model. 17, 2569(2011).
|
[25] |
P. Politzer and J. S. Murray, J. Mol. Model. 20, 2223(2014).
|
[26] |
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 09, Revision A. 01. Pittsburgh, PA: Gaussian, Inc. (2009).
|
[27] |
A. M. Astakhov, R. S. Stepanov, and A. Y. Babushkin, Combust. Explos. Shock Waves 34, 85(1998).
|
[28] |
W. A. Trzciński, S. Cudziło, Z. Chyłek, and L. Szymańczyk, J. Hazard. Mater. 157, 605(2008).
|
[29] |
Q. Wu, W. H. Zhu, and H. M. Xiao, RSC Adv. 4, 3789(2014).
|
[30] |
M. X. Zhang, P. E. Eaton, and R. Gilardi, Angew. Chem. Int. Ed. 39, 401(2000).
|
[31] |
B. M. Rice and J. J. Hare, J. Phys. Chem. A 106, 1770(2002).
|
[32] |
W. H. Zhu and H. M. Xiao, Struct. Chem. 21, 657(2010).
|
[33] |
Q. Wu, W. H. Zhu, and H. M. Xiao, J. Mol. Model. 19, 4039(2013).
|
[34] |
Q. Wu, W. H. Zhu, and H. M. Xiao, J. Phys. Chem. C 117, 16830(2013).
|
[1] | Xue-yan Shan, Bin Tong, Shi-mao Wang, Xiao Zhao, Wei-wei Dong, Gang Meng, Zan-hong Deng, Jing-zhen Shao, Ru-hua Tao, Xiao-dong Fang. Enhanced Photovoltage for Inverted Perovskite Solar Cells Using Delafossite CuCrO2 Hole Transport Material[J]. Chinese Journal of Chemical Physics , 2022, 35(6): 957-964. DOI: 10.1063/1674-0068/cjcp2103055 |
[2] | Renlong Zhu, Quanbing Pei, Junjun Tan, Xiaoxuan Zheng, Shuji Ye. Sum Frequency Generation Vibrational Spectra of Perovskite Nanocrystals at the Single-Nanocrystal and Ensemble Levels[J]. Chinese Journal of Chemical Physics , 2022, 35(5): 738-746. DOI: 10.1063/1674-0068/cjcp2204070 |
[3] | Liang-sheng Duan, Quan-ping Wu, Yuan-yuan Xu, Hui Wang, Zhe Sun, Yu Chen, Song Xue. One-Pot Synthesis of Tetraarylpyrrolo[3, 2-b]pyrrole Dopant-Free Hole-Transport Materials for Inverted Perovskite Solar Cells[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 217-226. DOI: 10.1063/1674-0068/cjcp2006106 |
[4] | Xiao-xia Li, Shen-long Jiang, Qun Zhang. Impact of Structural Disorder on Excitonic Behaviors and Dynamics in 2D Organic-Inorganic Hybrid Perovskites†[J]. Chinese Journal of Chemical Physics , 2020, 33(5): 561-568. DOI: 10.1063/1674-0068/cjcp2005071 |
[5] | Hai-xiao Zhang, Yue-tao Yang, Xiao-jun Liu. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 197-202. DOI: 10.1063/1674-0068/31/cjcp1708181 |
[6] | Z. Khalaj, M.Ghoranneviss, S.Nasiri laheghi, Z.Ghorannevis, R.Hatakeyama. Growth of Nano Crystalline Diamond on Silicon Substrate Using Different Etching Gases by HFCVD[J]. Chinese Journal of Chemical Physics , 2010, 23(6): 689-692. DOI: 10.1088/1674-0068/23/06/689-692 |
[7] | Qiang-chun Liu, Kai-bin Tang. Synthesis and Morphological Evolution of CuGaS2 Nanostructures via a Polyol Method[J]. Chinese Journal of Chemical Physics , 2006, 19(4): 335-340. DOI: 10.1360/cjcp2006.19(4).335.6 |
[8] | Chen Youcun, Zhang Yuanguang. Hydrothermal Synthesis and Gas Sensitivity Study of SnO2 Nanocrystallites[J]. Chinese Journal of Chemical Physics , 2005, 18(6): 1015-1018. DOI: 10.1088/1674-0068/18/6/1015-1018 |
[9] | Wu Xiaosong, Pan Lijia, Zou Gang, Liu Jianping, He Pingsheng. Preperation of PbS/poly(acrylic acid) Nanocrystal Micropatterns by Soft Lithography[J]. Chinese Journal of Chemical Physics , 2004, 17(5): 641-644. DOI: 10.1088/1674-0068/17/5/641-644 |
[10] | Wang Yinye, Ma Zhi, Qin Yongning. Prepartion, Characterization and Properties of Major Phases Mullite Composite Nanocrystals[J]. Chinese Journal of Chemical Physics , 2001, 14(2): 216-222. DOI: 10.1088/1674-0068/14/2/216-222 |