Advanced Search
Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. DOI: 10.1063/1674-0068/30/cjcp1703055
Citation: Qiong Wu, Bo Kou, Ze-wu Zhang, Zu-sheng Hang, Wei-hua Zhu. Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides[J]. Chinese Journal of Chemical Physics , 2017, 30(4): 404-410. DOI: 10.1063/1674-0068/30/cjcp1703055

Density Function Theory Study on Effects of Different Energetic Substituent Groups and Bridge Groups on Performance of Carbon-Linked Ditetrazole 2N-Oxides

More Information
  • Received Date: March 26, 2017
  • Revised Date: June 02, 2017
  • Based on the parent tetrazole 2N-oxide, six series of novel carbon-linked ditetrazole 2N-oxides with different energetic substituent groups (-NH2, -N3, -NO2, NF2, -NHNO2) and energetic bridge groups (-CH2-, -CH2-CH2-, -NH-, -N=N-, -NH-NH-) were designed. The overall performance and the effects of different energetic substituent groups and energetic bridge groups on the performance were investigated by density functional theory and electrostatic potential methods. The results showed that most of designed compounds have oxygen balance around zero, high heats of formation, high density, high energy, and acceptable sensitivity, indicating that tetrazole N-oxide is a useful parent energetic compound employed for obtaining high energy compounds, even only combined with some very common energetic substituent groups and bridge groups. Comprehensively considering the effects on energy and sensitivity, the -NO2, -NF2, -NH-and -NH-NH-are appropriate substituent groups for combining tetrozale N-oxide to design new energetic compounds, while -NH2, -N3, -CH2-CH2-, and -N=N-are inappropriate.
  • [1]
    X. X. Zhao, S. H. Li, Y. Wang, Y. C. Li, F. Q. Zhao, and S. P. Pang, J. Mater. Chem. A 4, 5495(2016).
    [2]
    M. Zheng, X. H. Li, H. L. Cui, and R. Z. Zhang, Chin. J. Chem. Phys. 29, 349(2016).
    [3]
    Q. Wu, W. H. Zhu, and H. M. Xiao, J. Mater. Chem. A 2, 13006(2014).
    [4]
    J. H. Zhang and J. M. Shreeve, J. Am. Chem. Soc. 136, 4437(2014).
    [5]
    J. H. Zhang, Q. M. Zhang, T. T. Vo, D. A. Parrish, and J. M. Shreeve, J. Am. Chem. Soc. 137, 1697(2015).
    [6]
    T. M. Klapötke, P. C. Schmid, S. Schnell, and J. Stierstorfer, J. Mater. Chem. A 3, 2658(2015).
    [7]
    P. Yin and J. M. Shreeve, Angew. Chem. Int. Ed. 54, 14513(2015).
    [8]
    C. B. Aakeröy, T. K. Wijethunga, and J. Despe, Chem. Eur. J. 21, 11029(2015).
    [9]
    C. Y. Zhang, X. G. Xue, Y. F. Cao, J. H. Zhou, A. B. Zhang, H. Z. Li, Y. Zhou, R. J. Xu, and T. Gao CrystEngComm 16, 5905(2014).
    [10]
    D. Hong, Y. Li, S. Zhu, L. Zhang, and C. Pang, Cent. Eur. J. Energ. Mater. 12, 47(2015).
    [11]
    Q. H. Zhang and J. M. Shreeve, Angew. Chem. Int. Ed. 53, 2540(2014).
    [12]
    Y. Shang, B. Jin, R. F. Peng, Q. Q. Liu, B. S. Tan, and Z. C. Guo, J. Zhao, and Q. C. Zhang, Dalton Trans. 45, 13881(2016).
    [13]
    Q. Yang, X. X. Song, G. W. Zhao, G. L. Yang, L. L. Yang, Q. Wei, G. Xie, S. P. Chen, and S. L. Gao, Eur. J. Inorg. Chem. 31, 5052(2016).
    [14]
    D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstörfer, Chem. Eur. J. 19, 4602(2013).
    [15]
    N. Fischer, D. Fischer, T. M. Klapötke, D. G. Piercey, and J. Stierstörfer, J. Mater. Chem. 22, 20418(2012).
    [16]
    B. Yuan, Z. J. Yu, and E. R. Bernstein, J. Phys. Chem. A 119, 2965(2015).
    [17]
    Q. An, T. Cheng, W. A. Goddard Ⅲ, and S. V. Zybin, J. Phys. Chem. C 119, 2196(2015).
    [18]
    V. P. Sinditskii, S. A. Filatov, V. I. Kolesov, K. O. Kapranov, A. F. Asachenko, M. S. Nechaev, V. V. Lunin, and N. I. Shishov, Thermochim. Acta 614, 85(2015).
    [19]
    N. Fischer, L. Gao, T. M. Klapötke, and J. Stierstörfer, Polyhedron 51, 201(2013).
    [20]
    M. J. Kamlet and S. J. Jacobs, J. Chem. Phys. 48, 23(1968).
    [21]
    P. Politzer, J. Martinez, J. S. Murray, M. C. Concha, and A. Toro-Labbé, Mol. Phys. 107, 2095(2009).
    [22]
    P. W. Atkins, Physical Chemistry, Oxford: Oxford University Press, (1982).
    [23]
    E. F. C. Byrd and B. M. Rice, J. Phys. Chem. A 110, 1005(2006).
    [24]
    M. Pospíšíl, P. Vávra, M. C. Concha, J. S. Murray, and P. Politzer, J. Mol. Model. 17, 2569(2011).
    [25]
    P. Politzer and J. S. Murray, J. Mol. Model. 20, 2223(2014).
    [26]
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 09, Revision A. 01. Pittsburgh, PA: Gaussian, Inc. (2009).
    [27]
    A. M. Astakhov, R. S. Stepanov, and A. Y. Babushkin, Combust. Explos. Shock Waves 34, 85(1998).
    [28]
    W. A. Trzciński, S. Cudziło, Z. Chyłek, and L. Szymańczyk, J. Hazard. Mater. 157, 605(2008).
    [29]
    Q. Wu, W. H. Zhu, and H. M. Xiao, RSC Adv. 4, 3789(2014).
    [30]
    M. X. Zhang, P. E. Eaton, and R. Gilardi, Angew. Chem. Int. Ed. 39, 401(2000).
    [31]
    B. M. Rice and J. J. Hare, J. Phys. Chem. A 106, 1770(2002).
    [32]
    W. H. Zhu and H. M. Xiao, Struct. Chem. 21, 657(2010).
    [33]
    Q. Wu, W. H. Zhu, and H. M. Xiao, J. Mol. Model. 19, 4039(2013).
    [34]
    Q. Wu, W. H. Zhu, and H. M. Xiao, J. Phys. Chem. C 117, 16830(2013).
  • Related Articles

    [1]Xue-yan Shan, Bin Tong, Shi-mao Wang, Xiao Zhao, Wei-wei Dong, Gang Meng, Zan-hong Deng, Jing-zhen Shao, Ru-hua Tao, Xiao-dong Fang. Enhanced Photovoltage for Inverted Perovskite Solar Cells Using Delafossite CuCrO2 Hole Transport Material[J]. Chinese Journal of Chemical Physics , 2022, 35(6): 957-964. DOI: 10.1063/1674-0068/cjcp2103055
    [2]Renlong Zhu, Quanbing Pei, Junjun Tan, Xiaoxuan Zheng, Shuji Ye. Sum Frequency Generation Vibrational Spectra of Perovskite Nanocrystals at the Single-Nanocrystal and Ensemble Levels[J]. Chinese Journal of Chemical Physics , 2022, 35(5): 738-746. DOI: 10.1063/1674-0068/cjcp2204070
    [3]Liang-sheng Duan, Quan-ping Wu, Yuan-yuan Xu, Hui Wang, Zhe Sun, Yu Chen, Song Xue. One-Pot Synthesis of Tetraarylpyrrolo[3, 2-b]pyrrole Dopant-Free Hole-Transport Materials for Inverted Perovskite Solar Cells[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 217-226. DOI: 10.1063/1674-0068/cjcp2006106
    [4]Xiao-xia Li, Shen-long Jiang, Qun Zhang. Impact of Structural Disorder on Excitonic Behaviors and Dynamics in 2D Organic-Inorganic Hybrid Perovskites[J]. Chinese Journal of Chemical Physics , 2020, 33(5): 561-568. DOI: 10.1063/1674-0068/cjcp2005071
    [5]Hai-xiao Zhang, Yue-tao Yang, Xiao-jun Liu. Study of Cadmium-Doped Zinc Oxide Nanocrystals with Composition and Size Dependent Band Gaps[J]. Chinese Journal of Chemical Physics , 2018, 31(2): 197-202. DOI: 10.1063/1674-0068/31/cjcp1708181
    [6]Z. Khalaj, M.Ghoranneviss, S.Nasiri laheghi, Z.Ghorannevis, R.Hatakeyama. Growth of Nano Crystalline Diamond on Silicon Substrate Using Different Etching Gases by HFCVD[J]. Chinese Journal of Chemical Physics , 2010, 23(6): 689-692. DOI: 10.1088/1674-0068/23/06/689-692
    [7]Qiang-chun Liu, Kai-bin Tang. Synthesis and Morphological Evolution of CuGaS2 Nanostructures via a Polyol Method[J]. Chinese Journal of Chemical Physics , 2006, 19(4): 335-340. DOI: 10.1360/cjcp2006.19(4).335.6
    [8]Chen Youcun, Zhang Yuanguang. Hydrothermal Synthesis and Gas Sensitivity Study of SnO2 Nanocrystallites[J]. Chinese Journal of Chemical Physics , 2005, 18(6): 1015-1018. DOI: 10.1088/1674-0068/18/6/1015-1018
    [9]Wu Xiaosong, Pan Lijia, Zou Gang, Liu Jianping, He Pingsheng. Preperation of PbS/poly(acrylic acid) Nanocrystal Micropatterns by Soft Lithography[J]. Chinese Journal of Chemical Physics , 2004, 17(5): 641-644. DOI: 10.1088/1674-0068/17/5/641-644
    [10]Wang Yinye, Ma Zhi, Qin Yongning. Prepartion, Characterization and Properties of Major Phases Mullite Composite Nanocrystals[J]. Chinese Journal of Chemical Physics , 2001, 14(2): 216-222. DOI: 10.1088/1674-0068/14/2/216-222

Catalog

    Article Metrics

    Article views (1503) PDF downloads (523) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return