2008 Vol. 21, No. 2

Content
Article
Trichloromethanesulfenyl thiocyanate, CCl3SSCN, was generated and studied by photoelectron spectroscopy (PES), photoionization mass spectroscopy (PIMS), and theoretical calculations. This molecule exhibits a gauche conformation, and the torsional angle around S-S bond is 91.4 o due to the sulfur-sulfur lone pair interactions. After ionization, the ground-state cationic-radical form of CCl3SSCN*+ adopts a trans planar main-atom structure with Cs symmetry. The highest occupied molecular orbital (HOMO) of CCl3SSCN corresponds to the electrons mainly localized on the sulfur 3p lone pair MO. The first ionization energy is determined to be 10.40 eV.
Metallomesogens Ln(bta)3L2 (Ln3+: La3+, Eu3+, and Ho3+; bta: benzoyltrifluoroacetonate; L: Schiff base) were prepared. Photoacoustic (PA) spectroscopy was used to study physicochemical properties of the liquid crystalline metal complexes. In the region of ligand absorption, PA intensity increases for Eu(bta)3L2, La(bta)3L2, and Ho(bta)3L2, in that order. It is found that the PA intensity of the ligand bears a relationto the intramolecular energy transfer process. For the first time, phase transitions of Eu(bta)3L2 from glass state to smectic A (SmA) phase and SmA phase to isotropic liquid are monitored by PA and fluorescence (FL) spectroscopy from two aspects: nonradiative and radiative transitions. The results show that PA technique may serve as a new tool for investigating the spectral properties and phase transitions of liquid crystals containing metal ions.
A new series of fluorescent arylamino fumarinitrile derivatives was designed and optimized using density function theory at the B3LYP/6-31G* level. Based on the optimized geometries, the electronic, fluorescent and 13C NMR spectra are calculated with INDO/CIS, CIS-ZINDO TD, and B3LYP/6-31G* methods, respectively. Starting with the first of the series, the LUMO-HOMO energy gaps of the derivatives become wider and the fluorescent wavelengths and the main peaks in the electronic spectra are blue-shifted owing to the large steric effect of naphthyl rings. On the contrary, the energy gaps of the derivatives turn narrow, and the fluorescent wavelengths and the main peaks in the electronic spectra are red-shifted since hydroxyl groups improve the symmetry and extend the conjugation system. The chemical shifts of sp2-C on the phenyl rings are moved upfield, while chemical shifts of carbon atoms on the cyano groups and those connected with the cyano groups are changed downfield in the presence of hydroxyl groups.
The ground and excited state properties of the [60]fullerene, diphenylbenzothiadiazole-triphenylamine (PBTDP-TPA) dyad and fullerene-diphenylbenzothiadiazole-triphenylamine (fullerene-PBTDP-TPA) triad were investigated theoretically using density functional theory with B3LYP functional and 3-21G basis et and time-dependent density functional theory with B3LYP functional and STO-3G basis set as well as 2D and 3D real space analysis methods. The 2D site representation reveals the electron-hole coherence on excitation. The 3D transition density shows the orientation and strength of the transition dipole moment, and the 3D charge difference density gives the orientation and result of the intramolecular charge transfer. Also, photoinduced intermolecular charge transfer (ICT) in PBTDP-TPA-fullerene triad are identified with 2D and 3D representations, which reveals the mechanisms of ICT in donor-bridge-acceptor triad on excitation. Besides that we also found that the direct superexchange ICT from donor to acceptor (tunneling through the bridge) strongly promotes the ICT in the donor-bridge-acceptor triad.
The aromaticity of all possible substituted fullerene isomers of C18N2, C18B2, C18BN, and their molecularions which originate from the C20 (Ih) cage were studied by the topological resonance energy (TRE) and the percentage topological resonance energy methods. The relationship between the aromaticity of C18BxNy isomers and the sites where the heteroatoms dope at the C20 (Ih) cage is discussed. Calculation results show that at the neutral and cationic states all the isomers are predicted to be antiaromatic with negative TREs, but their polyvalent anions are predicted to be aromatic with positive TREs. The most stable isomer is formed by heteroatom doping at the 1,11-sites in C18N2, C18B2, and C18BN. Heterofullerenes are more aromatic than C20. The stability order in the neutral states is C18N2>C18BN>C18B2>C20. The stability order in closed-shell is C18B2 8->C20 6->C18BN6->C18N2 4-. This predicts theoretically that their polyvalent anions have high aromaticity.
The reaction of CH2SH radical with fluorine atom was studied at the levels of B3LYP/6-311G(d,p) and MP2(Full)/6-311G(d,p). The computational results show that the reaction has three channels and proceeds by the addition of fluorine atoms on carbon or sulfur sites of CH2SH, forming initial intermediates. The calculated results show that the channel in which fluorine attaches to the carbon atom to form CH2S and HF, is the most likely reaction pathway. Topological analysis of electron density was carried out for the three channels. The change trends of the chemical bonds on the reaction paths were discussed. The energy transition states and the structure transition regions (states) of the three channels were found. The calculated results show that the structure transition regions are broad in unobvious exothermic reactions or unobvious endothermic reactions, and are narrow in obvious exothermic reactions or obvious endothermic reactions.
By introducing the functional theory into the calculation of electric double layer (EDL) interaction, the interaction energies of two parallel plates were calculated respectively at low, moderate, and high potentials. Compared with the results of two existing methods, Debye-H?uckel and Langmuir methods, which are applicable just to the critical potentials and perform poorly in the intermediate potential, the functional approach not only has much simpler expression of the EDL interaction energy, but also performs well in the entire range of potentials.
The longitudinal ultrasonic velocity (Vl), attenuation (ffl), magnetization and resistivity of single phase polycrystalline La1=3Sr2=3CoO3 were measured as a function of temperature from 20 K to 300 K. The resistivity shows metallic behavior in the whole temperature range and a kink at 235 K was observed, which coincides with the ferromagnetic transition temperature (Tc). As the temperature cools down from Tc, the Vl softens conspicuously at beginning and reaches a minimum at 120 K. After that the Vl dramatically stiffens below 120 K accompanied by a wide attenuation peak. The analysis of the results suggests that these ultrasonic anomalies may correspond to local lattice distortions via the Jahn-Teller effect of intermediate spin Co3+.
The effects of potassium addition and the potassium content on the activity and selectivity of coprecipitated iron catalyst for Fischer-Tropsch synthesis (FTS) were studied in a fixed bed reactor at 1.5 MPa, 300 o C, and contact time (W=F) of 12.5 gcath/mol using the model bio-oil-syngas of H2/CO/CO2/N2 (62/8/25/5, vol%). It was found that potassium addition increases the catalyst activity for FTS and the reverse water gas shift reaction. Moreover, potassium increases the average molecular weight (chain length) of the hydrocarbon products. With the increase of potassium content, it was found that CH4 selectivity decreases and the selectivity of liquid phase products (C5+) increases. The characteristics of FTS catalysts with different potassium content were also investigated by various characterization measurements including X-ray diffraction, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller surface area. Based on experimental results, 100Fe/6Cu/16Al/6K (weight ratio) was selected as the optimal catalyst for FTS from bio-oil-syngas. The results indicate that the 100Fe/6Cu/16Al/6K catalyst is one of the most promising candidates to directly synthesize liquid bio-fuel using bio-oil-syngas.
SiC films were prepared by modified heating polystyrene/silica bilayer method on Si (111) substrate in normal pressure flowing Ar ambient at 1300 o C. The films were investigated by Fourier transform infrared absorption, X-ray diffraction, and scanning electron microscopy measurements. The chemical thermodynamics process is discussed. The whole reaction can be separated into four steps. The carburizing of SiO is the key step of whole reaction. The main reaction-sequence is figured out based on Gibbs free energy and equilibrium constant. Flowing Ar is necessary to continue the progress of whole reaction by means of carrying out accumulating gaseous resultants. The film is very useful for application in a variety of MOS-based devices for its silica/SiC/Si(111) structure, in which the silica layer can be removed thoroughly by the standard RCA cleaning process.
The mixed monolayer behavior of bilirubin/cholesterol was studied through surface pressure-area (?-A) isotherms on aqueous solutions containing various concentrations of calcium ions. Based on the data of ?-A isotherms, the mean area per molecule, collapse pressure, surface compressibility modulus, excess molecular areas, free energy of mixing, and excess free energy of mixing of the monolayers on different subphases were calculated. The results show an expansion in the structure of the mixed monolayer with Ca2+ in subphase, and non-ideal mixing of the components at the air/water interface is observed with positive deviation from the additivity rule in the excess molecular areas. The miscibility between the components is weakened with the increase of concentration of Ca2+ in subphase. The facts indicate the presence of coordination between Ca2+ and the two components. The mixed monolayer, in which the molar ratio of bilirubin to cholesterol is 3:2, is more stable from a thermodynamic point of view on pure water. But the stable 3:2 stoichiometry complex is destroyed with the increase of the concentration of Ca2+ in subphase. Otherwise, the mixed monolayers have more thermodynamic stability at lower surface pressure on Ca2+ subphase.
Dual fluorescence and UV absorption of 2'-ethylhexyl 4-(N,N-dimethylamino)benzoate (EHDMAB) were investigated in cationic, non-ionic and anionic micelles. When EHDMAB was solubilized in different micelles, the UV absorption of EHDMAB was enhanced. Twisted intramolecular charge transfer (TICT) emission with longer wavelength was observed in ionic micelles, whereas TICT emission with shorter wavelength was obtained in non-ionic micelles. In particular, dual fluorescence of EHDMAB was significantly quenched by the positively charged pyridinium ions arranged in the Stern layer of cationic micelles. UV radiation absorbed mainly decays via TICT emission and radiationless deactivation. The dimethylamino group of EHDMAB experiences different polar environments in ionic and non-ionic micelles according to the polarity dependence of TICT emission of EHDMAB in organic solvents. In terms of the molecular structures and sizes of EHDMAB and surfactants, each individual EHDMAB molecule should be buried in micelles with its dimethylamino group toward the polar head groups of different micelles and with its 2'-ethylhexyl chain toward the hydrophobic micellar core. Dynamic fluorescence quenching measurements of EHDMAB provide further support for the location of EHDMAB in different micelles.
The effect of ethanol (C2H5OH), propanol (C3H7OH), and butanol (C4H9OH) upon the viscosity of tetradecyltrimethylammonium bromide (TTAB) solution in the presence or absence of KBr at 30 o C was investigated, where the surfactant concentration CS is kept constant. In the absence of KBr, the relative viscosity ηr of TTAB solution increases linearly with the alcohol concentration CA, indicating that the alcohols do not promote micelle formation of TTAB. In the presence of KBr, ′r linearly decreases with CA for C2H5OH, but it exhibits a maximum with increasing CA for C3H7OH or C4H9OH. The facts reveal that C2H5OH or C4H9OH promotes the micelle formation of TTAB. A possible explanation is that the hydrophobicity of the micellar interior is enhanced by KBr, so that C2H5OH or C4H9OH can dissolve in micelle and promotes micelle formation. In the presence of KCl, which is less efficient in promoting the micelle formation of cationic surfactant, both C3H7OH and C4H9OH have only a slight effect on the micelle formation. In contrast, due to the hydrophilicity, C2H5OH cannot dissolve in micelles in the presence of KBr or KCl.
The solid Supramolecular complexes of β-cyclodextrin (β-CD) with ethylenediamine 1, diethylenetriamine 2 and triethylamine 3 were obtained and characterized using elemental analysis, powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, and 1H nuclear magnetic resonance spectroscopy. Based on the results of elemental analysis and 1H NMR, the guest-host stoichiometries of the three solid complexes were determined to be 5:2 for 1-β-CD, 1:1 for 2-β-CD, and 1:3 for 3-β-CD. The yields were relative to the molar volume ratio of guest toβ-CD cavity, and increased in the order: 1-β-CD<2-β-CD<3-β-CD. X-ray diffraction patterns of the inclusion complexes gave very good exhibitions not only in location of diffraction peaks but also in shape and diffraction intensity of the peaks due to the intermolecular complexations betweenβ-CD and the guests. The formation of host-guest inclusion complexes exhibited obviously enhanced phase change temperatures of the complexed guests such as 1 and 3. The H-5 protons located at the narrower rim inside the CD cavity experienced a higher shift upon inclusion while all other protons experienced lower shifts.
Single-crystalline Ga-doped SnO2 nanowires and SnO2:Ga2O3 heterogeneous microcombs were synthesized by a simple one-step thermal evaporation and condensation method. They were characterized by means of X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). FE-SEM images showed that the products consisted of nanowires and microcombs that represent a novel morphology. XRD, SAED and EDS indicated that they were single-crystalline tetragonal SnO2. The influence of experimental conditions on the morphologies of the products is discussed. The morphology of the product showed a ribbon-like stem and nanoribbon array aligned evenly along one or both side of the nanoribbon. It was found that many Ga2O3 nanoparticles deposited on the surface of the microcombs. The major core nanoribbon grew mainly along the [110] direction and the self-organized branching nanoribbons grew epitaxially along [1110] or [1110] orientation from the (110) plane of the stem. A growth process was proposed for interpreting the growth of these remarkable SnO2:Ga2O3 heterogeneous microcombs. Due to the heavy doping of Ga, the emission peak in photoluminescence spectra has red-shifted as well as broadened significantly.
Anisotropic polyaniline (PAni) plates decorated with self-aligned nanofiber arrays were synthesized under the hydrothermal conditions. The formation mechanism of the self-assembled structures was investigated by studying the effect on PAni micro-structure with additive electrolyte in reaction system, and numerical simulation for dependence of systematic electrostatic energy on cross angles of self-assembled nanofiber arrays in grid textured PAni plates. It is proposed that the electrostatic interaction based on ionic doping charges plays an important role in the formation of the self-assembled PAni structures.