Advanced Search
    Zhao-xiang Wang, Ting Dong, Tao Kan, Quan-xin Li. Effect of Potassium Addition on Coprecipitated Iron Catalysts for Fischer-Tropsch Synthesis Using Bio-oil-syngas[J]. Chinese Journal of Chemical Physics , 2008, 21(2): 141-150. DOI: 10.1088/1674-0068/21/02/141-150
    Citation: Zhao-xiang Wang, Ting Dong, Tao Kan, Quan-xin Li. Effect of Potassium Addition on Coprecipitated Iron Catalysts for Fischer-Tropsch Synthesis Using Bio-oil-syngas[J]. Chinese Journal of Chemical Physics , 2008, 21(2): 141-150. DOI: 10.1088/1674-0068/21/02/141-150

    Effect of Potassium Addition on Coprecipitated Iron Catalysts for Fischer-Tropsch Synthesis Using Bio-oil-syngas

    • The effects of potassium addition and the potassium content on the activity and selectivity of coprecipitated iron catalyst for Fischer-Tropsch synthesis (FTS) were studied in a fixed bed reactor at 1.5 MPa, 300 o C, and contact time (W=F) of 12.5 gcath/mol using the model bio-oil-syngas of H2/CO/CO2/N2 (62/8/25/5, vol%). It was found that potassium addition increases the catalyst activity for FTS and the reverse water gas shift reaction. Moreover, potassium increases the average molecular weight (chain length) of the hydrocarbon products. With the increase of potassium content, it was found that CH4 selectivity decreases and the selectivity of liquid phase products (C5+) increases. The characteristics of FTS catalysts with different potassium content were also investigated by various characterization measurements including X-ray diffraction, X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller surface area. Based on experimental results, 100Fe/6Cu/16Al/6K (weight ratio) was selected as the optimal catalyst for FTS from bio-oil-syngas. The results indicate that the 100Fe/6Cu/16Al/6K catalyst is one of the most promising candidates to directly synthesize liquid bio-fuel using bio-oil-syngas.
    • loading

    Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return