2011 Vol. 24, No. 3

Article
Content
2011, 24(3): 0-0. doi: 10.1088/1674-0068/24/3/0-0
Despite of its great importance, the detailed molecular mechanism for carbohydrate pyrolysis remains poorly understood. We perform a density functional study with a newly developed XYG3 functional on the processes for D-glucose pyrolysis to acrolein. The most feasible reaction pathway starts from an isomerization from D-glucose to D-fructose, which then undergoes a cyclic Grob fragmentation, followed by a concerted electrocyclic dehydration to yield acrolein. This mechanism can account for the known experimental results.
We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption ex-perimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to en-ergy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.
A flow system was set up to measure the quenching probability γ of O2(1Δg) on various O2-adsorbed metal surfaces including Cu, Cr, Ni, and Ag. γ increased with both the duration of the experiment and the O2(1Δg) concentration. After several hours evacuation to a few Pa, γ can return to its original value. A deactivation mechanism of O2(1Δg) is suggested by considering first the weak chemisorption of O2(1Δg) on the surface adsorption sites, followed by the near resonant energy transfer between the gas phase O2(1Δg) and surface O2(1g-). A phenomenological model in accord with the experimental fact has been proposed together with relevant kinetic equations.
Anionic fragments, F- and Cl- including two isotope species 35Cl- and 37Cl-, are ob-served in the photoexcitations of CFCl3. The ion-pair anion e±ciency spectra of 35Cl- and 37Cl- are recorded in the photon energy range of 7.75~22.00 eV. The threshold of ion-pair dissociation CFCl3→CFCl2++Cl- is experimentally determined to be 7.94±0.04 eV. With the references of the high-resolution photoabsorption spectra reported in the literatures, we make tentative assignments of the electron valence-to-Rydberg transitions. Furthermore, the multibody ion-pair fragmentation processes to Cl- are discussed by comparison between the calculated thermochemical thresholds and the experimental efficiency spectrum.
The absorption spectrum of the C1∏ state of N2O molecule in the wavelength range of 142.5~147.5 nm has been measured under the jet-cooled condition, and the clear spectral features are displayed. A vibrational progression is observed with a frequency interval of about 500 cm-1. With the aid of potential energy surfaces (PES) of the low-lying electronic states of N2O, the vibrational progression is assigned as the bending mode of the repulsive C1∏ state. From the Fourier transformation analysis, the recurrence period of the peri-odic orbit near the transition state region is derived to be 65 fs. Through the least-square Lorentzian fitting, the lifetimes of the resonance levels are estimated from their profile widths to be about 20 fs, which is shorter than the recurrence period. Therefore, a new explanation is suggested for the observed diffuse spectral structure, based on the behavior of dissociating N2O on PES of the C1∏ state in the present excitation energy range.
Photon-induced dissociation pathways of thymine are investigated with vacuum ultraviolet photoionization mass spectrometry and theoretical calculations. The photoionization mass spectra of thymine at different photon energy are measured and presented. By selecting suitable photon energy, exclusively molecular ion m/z=126 is obtained. At photon energy of 12.0 eV, the major ionic fragments at m/z=98, 97, 84, 83, 70, and 55 are obtained, which are assigned to C4H6N24O+、C4H5N2O+、C3H4N2O+(or C4H6NO+)、C4H5NO+、C2NO2+ and C3H5N+, respectively. With help of theoretical calculations, the detailed dissociation pathways of thymine at low energy are well established.
Inverse halogen bonds interactions involving Br in the electronic deficiency sys-tems of CH3…Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6-311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs com-plexes are 218.87, 219.48, 159.18, and 143.05 kJ/mol (MP2/6-311++G(d, p)), re-spectively. The relative stabilities of the four complexes increased in the order:CH3…BrCN3…BrNC3…BrH≈CH3…BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content.
Density functional theory method has been employed to investigate the structures of the prototypical technetium-labeled diphosphonate complex 99mTc-MDP, where MDP represents methylenediphosphonic acid. A total of 14 trial structures were generated by allowing for the geometric, conformational, charge, and spin isomerism. Based on the optimized structures and calculated energies at the B3LYP/LANL2DZ level, two stable isomers were determined for the title complex. And they were further studied systematically in comparison with the experimental structure. The basis sets 6-31G*(LANL2DZ for Tc), 6-31G¤(cc-pVDZ-pp for Tc), and DGDZVP have also been employed in combination with the B3LYP functional to study the basis set effect on the geometries of isomers. The optimized structures agree well with the available experimental data, and the bond lengths are more sensitive to the basis set than the bond angles. The charge distributions were studied by the Mulliken population analysis and natural bond orbital analysis. The results reflect a significant ligand-to-metal electron donation.
The solvents and substituents of two similar fluorescent sensors for cyanide, 7-diethylamino-3-formylcoumarin (sensor a) and 7-diethylamino-3-(2-nitrovinyl)coumarin (sensor b), are proposed to account for their distinct sensing mechanisms and experimental phenomena. The time-dependent density functional theory has been applied to investigate the ground states and the first singlet excited electronic states of the sensor as well as their possible Michael reaction products with cyanide, with a view to monitoring their geometries and photophysical properties. The theoretical study indicates that the protic water solvent could lead to final Michael addition product of sensor a in the ground state, while the aprotic acetonitrile solvent could lead to carbanion as the final product of sensor b. Furthermore, the Michael reaction product of sensor a has been proved to have a torsion structure in its first singlet excited state. Correspondingly, sensor b also has a torsion structure around the nitrovinyl moiety in its first singlet excited state, while not in its carbanion structure. This could explain the observed strong fluorescence for sensor a and the quenching fluorescence for the sensor b upon the addition of the cyanide anions in the relevant sensing mechanisms.
The mechanism of the oxide extraction reaction between singlet germylene carbene and its derivatives X2Ge=C: (X=H, F, Cl, CH3) and ethylene oxide has been investigated with B3LYP/6-311G(d,p) method. The results show that this kind of reaction has similar mecha-nism, the shift of 2p lone electron pair of O in ethylene oxide to the 2p unoccupied orbital of C in X2Ge=C: gives a p→p donor-acceptor bond, thereby leading to the formation of inter-mediate. As the p→p donor-acceptor bond continues to strengthen, that is the C-O bond continues to shorten, the intermediate generates product (P+C2H4) via transition state. It is the substituent electronegativity that mainly affect the extraction reactions. When the substituent electronegativity is greater, the energy barrier is lower, and the reaction rate is greater.
Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the in-tramolecular OH…N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molec-ular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of pho-toelectron spectra is interpreted.
Using self-consistent field and density functional theories, we investigate the self-assembly behavior of asymmetric dimer particles in a supported AB block copolymer bilayer. Asym-metric dimer particles are amphiphilic molecules composed by two different spheres. One prefers to A block of copolymers and the other likes B block when they are introduced into the copolymer bilayer. The two layer structure of the dimer particles is formed within the bilayer. Due to the presence of the substrate surface, the symmetry of the two leaflets of the bilayer is broken, which may lead to two different layer structures of dimer particles within each leaflet of the bilayer. With the increasing concentration of the asymmetric dimer particles, in-plane structure of the dimer particles undergoes sparse square, hexagonal, dense square, and cylindrical structures. In a further condensed packing, a bending cylindrical structurecomes into being. Here we verify that the entropic effect of copolymers, the enthalpy of the system and the steric repulsion of the dimer particles are three important factors determing the self-assembly of dimer particles within the supported copolymer bilayer.
High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a big challenge to FAIMS spectral peak analysis. In this work, a universal and effective model of FAIMS spectral peak profile has been proposed by introducing ion trajectory and loss height. With this model, the influence of the structure of ion drift tube, dispersion voltages, compensation voltages, and carrier gas flow rate on the FAIMS spectral peak characteristics like peak shape, full width at half maximum and peak height is analyzed and discussed. The results show that the influence of different factors on the FAIMS spectral peak profile can be qualitatively described by the model which agrees with the experimental data.
A new anion receptor bearing phenolic hydroxy group based on 3,5-ditertbutylsalicylaldehyde-p-nitrophenylhydrazone (1) was designed and synthesized. Upon addition of AcO- and F-, the receptor exhibited visible color changes from deep yellow to purple. However, no obvious color changes were observed on addition of the other anions tested (H2PO4-, Cl-, Br-, I-). The binding properties of the receptor with anions such as AcO- and F- were investigated by UV-Vis and fluorescent titrations. The result indicated that the receptor 1 had a higher affinity to AcO- and F- and a 1:1 host-guest complex was formed through H-bond interactions between 1 and anions.
We provides a novel approach to generate low-temperature atomic oxygen anions (O-) emis-sion using the cesium oxide-doped 12CaO·7Al2O3 (Cs2O-doped C12A7). The maximal emis-sion intensity of O- from the Cs2O-doped C12A7 at 700 oC and 800 V/cm reached about 0.54 μA/cm2, which was about two times as strong as that from the un-doped C12A7(0.23 μA/cm2) under the same condition. The initiative temperature of the O- emission from the Cs2O-doped C12A7 was about 500 oC, which was also much lower than the initiative temperature from the un-doped C12A7 (570 oC) in the given field of 800 V/cm. High pure O- emission close to 100% could be obtained from the Cs2O-doped C12A7 under the lower temperature (<550oC). The emission features of the Cs2-doped C12A7, including the emis-sion distribution, temperature effect, and emission branching ratio have been investigated in detail and compared with the un-doped C12A7. The structure and storage characteristics of the resulting material were also investigated via X-ray diffraction and electron paramag-netic resonance. It was found that doping Cs2 to C12A7 will lower the initiative emission temperature and enhance the emission intensity.
Zn1-xMnxO nanorods and Zn1-2xMnxLixO nano-particles were synthesized by solvothermal method at 160 oC. X-ray diffraction and Raman results showed that Mn ions were well incorporated into the ZnO matrix. No magnetic hysteresis were found in the magnetization curves. The hyperfine structures were observed in electron spin resonance spectra, indicating no ferromagnetic interaction between substituted Mn ions. The co-doping of Li can only change the morphology not the magnetic properties.
3D urchin-like Co3O4 have been successfully prepared by calcination of the urchin-like pre-cursors, which were synthesized through a facile hydrothermal route. The morphology and structure of the 3D urchin-like Co3O4 have been characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission elec-tron microscopy, and X-ray powder diffraction. The as-synthesized Co3O4 products are of urchin-like structures with approximated 5-7 μm in diameter, and are composed of numer-ous nanoparticles chains with the particles diameter of about 15 nm. This kind of urchin-like Co3O4 exhibits superior energy storage properties with the high capacity of 1.369 Ah/g and its good cyclic stability shows great potential in the rechargeable Li-ion battery.
Fabrication of complex molecular films of organic materials is one of the most important issues in modern nanoscience and nanotechnology. Soft materials with flexible properties have been given much attention and can be obtained through bottom up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and technologies. In this work, we report the successful incorporation of cationic laser dye rhodamine 6G abbreviated as R6G into the pre-assembled polyelectrolyte/surfactant complex film onto quartz substrate by electrostatic adsorption technique. Poly(allylamine hydrochloride) (PAH) was used as polycation and sodium dodecyl sulphate (SDS) was used as anionic surfactant. UV-Vis absorption spec-troscopic characterization reveals the formation of only H-type aggregates of R6G in their aqueous solution and both H- and J-type aggregates in PAH/SDS/R6G complex layer-by-layber films as well as the adsorption kinetics of R6G onto the complex films. The ratio of the absorbance intensity of two aggregated bands in PAH/SDS/R6G complex films is merely independent of the concentration range of the SDS solution used to fabricate PAH/SDS com-plex self-assembled films. Atomic force microscopy reveals the formation of R6G aggregates in PAH/SDS/R6G complex films.
We have investigated the doping behavior of rare earth element holmium (Ho3+) in ZnO semiconductor. The structural, microstructure, and magnetic properties of Zn1-xHoxO (x=0.0, 0.04, and 0.05) thin films deposited on Si(100) substrate by thermal evaporation technique were studied. The ceramic targets were prepared by conventional solid state ceramic technique. The pallets used as target were final sintered at 900 oC in the presence of N2 atmosphere. The experimental results of X-ray diffraction (XRD) spectra, surface morphology, and magnetic properties show that the Ho3+ doped ZnO thin films has a strong influence on the materials properties. The higher angle shift in peak position and most preferred (101) orientation were observed in XRD pattern. These spectra confirmed the substitution of Ho3+ in ZnO lattice. The surface morphology and stoichiometry for both bulk and thin films were analyzed by scanning electron microscopy and energy dispersive spectroscopy. It was observed that grain size decreases with the increase of Ho3+. Room temperature ferromagnetism was observed for Zn0.95Ho0.05O films. The ferromagnetism might be attributed to the substitution of Ho ions for Zn2+ in ZnO lattices.
Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetonitrile. Boehm titration, X-ray photoelectron spectroscopy, scanning electron microscope coupled with an energy dispersive X-ray microanalyzer, and Brunauer-Emmett-Teller method were used to characterize the samples. The number of carboxyl groups on the surface was found to be the main factor affecting the catalytic activity. An optimum catalytic performance with a yield of 15.7% and a selectivity of 87.2% to phenol was obtained.
Various ordered mesoporous carbons (OMCs) have been prepared by evaporation-induced triconstituent co-assembly method. Their mesostructural stability under different carbon content, aging time and acidity were conveniently monitored by X-ray diffraction, transmis-sion electron microscopy, and N2 sorption isotherms techniques. The results show mesostruc-tural stability of OMCs is enhanced as the carbon content increases from 36% to 46%, further increasing carbon content deteriorates the mesostructural stability. Increasing aging time from 0.5 h to 5.0 h make the mesostructural stability go through an optimum (2.0 h) and gradually reduce framework shrinkage of the OMCs. Highly OMCs can only be obtained in the acidity range of 0.2~1.2 mol/L HCl, when the acidity is near the isoelectric point of silica, the resulting OMCs have the best mesostructure stability. Under the optimum condi-tion, the carbon content of 46%, aging time of 2.0 h, and 0.2 mol/L HCl, the resulting OMCs have the best mesostructure stability and the highest BET surface areas of 2281 m2/g.