Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Xi Yang, Zhong-yuan Lu. A Method for Directly Counting and Quantitatively Comparing Aggregated Structures during Cluster Formation[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 137-148. doi: 10.1063/1674-0068/cjcp2008139
Citation: Xi Yang, Zhong-yuan Lu. A Method for Directly Counting and Quantitatively Comparing Aggregated Structures during Cluster Formation[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 137-148. doi: 10.1063/1674-0068/cjcp2008139

A Method for Directly Counting and Quantitatively Comparing Aggregated Structures during Cluster Formation

doi: 10.1063/1674-0068/cjcp2008139
More Information
  • Corresponding author: Zhong-yuan Lu, E-mail: luzhy@jlu.edu.cn
  • Received Date: 2020-08-10
  • Accepted Date: 2020-10-08
  • Available Online: 2020-11-16
  • Publish Date: 2021-04-27
  • Assembling of a few particles into a cluster commonly occurs in many systems. However, it is still challenging to precisely control particle assembling, due to the various amorphous structures induced by thermal fluctuations during cluster formation. Although these structures may have very different degrees of aggregation, a quantitative method is lacking to describe them, and how these structures evolve remains unclear. Therefore a significant step towards precise control of particle self-assembly is to describe and analyze various aggregation structures during cluster formation quantitatively. In this work, we are motivated to propose a method to directly count and quantitatively compare different aggregated structures. We also present several case studies to evaluate how the aggregated structures during cluster formation are affected by external controlling factors, e.g., different interaction ranges, interaction strengths, or anisotropy of attraction.

     

  • loading
  • [1]
    J. K. Stolarczyk, A. Deak, and D. F. Brougham, Adv. Mater. 28, 5400 (2016). doi: 10.1002/adma.201505350
    [2]
    L. Trombach, R. S. Hoy, D. J. Wales, and P. Schwerdtfeger, Phys. Rev. E 97, 043309 (2018). doi: 10.1103/PhysRevE.97.043309
    [3]
    D. J. Wales, Energy landscapes: Applications to Clusters, Biomolecules and Glasses, Cambridge: Cambridge University Press, (2003).
    [4]
    N. Arkus, V. N. Manoharan, and M. P. Brenner, Phys. Rev. Lett. 103, 118303 (2009). doi: 10.1103/PhysRevLett.103.118303
    [5]
    F. Calvo, J. P. Doye, and D. J. Wales, Nanoscale 4, 1085 (2012). doi: 10.1039/C1NR10679A
    [6]
    R. S. Hoy, J. Harwayne-Gidansky, and C. S. O'Hern, Phys. Rev. E 85, 051403 (2012). doi: 10.1103/PhysRevE.85.051403
    [7]
    R. S. Hoy, Phys. Rev. E 91, 012303 (2015).
    [8]
    M. Holmes-Cerfon, Annu. Rev. Condens. Matter Phys. 8, 77 (2017). doi: 10.1146/annurev-conmatphys-031016-025357
    [9]
    F. Calvo, J. P. K. Doye, and D. J. Wales, J. Chem. Phys. 116, 2642 (2002). doi: 10.1063/1.1435572
    [10]
    S. Schnabel, M. Bachmann, and W. Janke, J. Chem. Phys. 131, 124904 (2009). doi: 10.1063/1.3223720
    [11]
    M. P. Taylor, W. Paul, and K. Binder, Phys. Rev. E 79, 050801 (2009). doi: 10.1103/PhysRevE.79.050801
    [12]
    D. Frenkel and D. J. Wales, Nature Mat. 10, 410 (2011). doi: 10.1038/nmat3037
    [13]
    D. J. Wales, J. Chem. Phys. 146, 054306 (2017). doi: 10.1063/1.4974838
    [14]
    J. Madge and M. A. Miller, Soft Matter 13, 7780 (2017). doi: 10.1039/C7SM01646H
    [15]
    J. Madge, D. Bourne, and M. A. Miller, J. Phys. Chem. B 122, 9815 (2018). doi: 10.1021/acs.jpcb.8b08096
    [16]
    P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983). doi: 10.1103/PhysRevB.28.784
    [17]
    J. D. Honeycutt and H. C. Andersen, J. Phys. Chem. 91, 4950 (1987). doi: 10.1021/j100303a014
    [18]
    D. Faken and H. Jónsson, Comput. Mater. Sci. 2, 279 (1994). doi: 10.1016/0927-0256(94)90109-0
    [19]
    J. Van Duijneveldt and D. Frenkel, J. Chem. Phys. 96, 4655 (1992). doi: 10.1063/1.462802
    [20]
    R. S. Hoy and C. S. O'Hern, Phys. Rev. Lett. 105, 068001 (2010). doi: 10.1103/PhysRevLett.105.068001
    [21]
    A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, Nano Lett. 13, 4399 (2013). doi: 10.1021/nl402231z
    [22]
    F. Li, D. P. Josephson, and A. Stein, Angew. Chem. Int. Ed. 50, 360 (2011). doi: 10.1002/anie.201001451
    [23]
    H. R. Vutukuri, A. F. Demirörs, B. Peng, P. D. van Oostrum, A. Imhof, and A. van Blaaderen, Angew. Chem. Int. Ed. 124, 11411 (2012). doi: 10.1002/ange.201202592
    [24]
    M. B. Bannwarth, S. W. Kazer, S. Ulrich, G. Glasser, D. Crespy, and K. Landfester, Angew. Chem. Int. Ed. 52, 10107 (2013). doi: 10.1002/anie.201302133
    [25]
    M. B. Bannwarth, S. Utech, S. Ebert, D. A. Weitz, D. Crespy, and K. Landfester, ACS Nano 9, 2720 (2015). doi: 10.1021/nn5065327
    [26]
    M. P. Valignat, O. Theodoly, J. C. Crocker, W. B. Russel, and P. M. Chaikin, Proc. Natl. Acad. Sci. USA 102, 4225 (2005). doi: 10.1073/pnas.0500507102
    [27]
    R. S. Hoy and N. C. Karayiannis, Phys. Rev. E 88, 012601 (2013). doi: 10.1103/PhysRevE.88.012601
    [28]
    M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford: Oxford University Press, 333 (2010).
    [29]
    K. J. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, Small 5, 1600 (2009). doi: 10.1002/smll.200900358
    [30]
    S. A. Mallory, C. Valeriani, and A. Cacciuto, Annu. Rev. Phys. Chem. 69, 59 (2018). doi: 10.1146/annurev-physchem-050317-021237
    [31]
    H. Abelson, D. Allen, D. Coore, C. Hanson, G. Homsy, T. F. Knight Jr., R. Nagpal, E. Rauch, G. J. Sussman, and R. Weiss, Commun. ACM 43, 74 (2000). http://www.researchgate.net/publication/246052069_Embedding_the_Internet_amorphous_computing
    [32]
    A. T. Becker, E. D. Demaine, S. P. Fekete, J. Lonsford, and R. Morris-Wright, Natural Computing 18, 181 (2019). doi: 10.1007/s11047-017-9666-6
    [33]
    C. L. Phillips, E. Jankowski, B. J. Krishnatreya, K. V. Edmond, S. Sacanna, D. G. Grier, D. J. Pine, and S. C. Glotzer, Soft Matter 10, 7468 (2014). doi: 10.1039/C4SM00796D
    [34]
    D. T. Seaton, T. Wüst, and D. P. Landau, Phys. Rev. E 81, 011802 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20365390
    [35]
    M. P. Taylor, W. Paul, and K. Binder, Polym. Sci. Ser. C 55, 23 (2013). doi: 10.1134/S1811238213060040
    [36]
    L. Trombach and P. Schwerdtfeger, Phys. Rev. E 98, 033311 (2018). doi: 10.1103/PhysRevE.98.033311
    [37]
    J. Lacava, P. Born, and T. Kraus, Nano Lett. 12, 3279 (2012). doi: 10.1021/nl3013659
    [38]
    A. S. Urban, X. Shen, Y. Wang, N. Large, H. Wang, M. W. Knight, P. Nordlander, H. Chen, and N. J. Halas, Nano Lett. 13, 4399 (2013). doi: 10.1021/nl402231z
    [39]
    J. E. Galván-Moya, T. Altantzis, K. Nelissen, F. M. Peeters, M. Grzelczak, L. M. Liz-Marzán, S. Bals, and G. Van Tendeloo, ACS Nano 8, 3869 (2014). doi: 10.1021/nn500715d
    [40]
    J. P. Doye, D. J. Wales, and R. S. Berry, J. Chem. Phys. 103, 4234 (1995). doi: 10.1063/1.470729
    [41]
    S. J. Khan, O. Weaver, C. Sorensen, and A. Chakrabarti, Langmuir 28, 16015 (2012). doi: 10.1021/la303894s
    [42]
    N. Kern and D. Frenkel, J. Chem. Phys. 118, 9882 (2003). doi: 10.1063/1.1569473
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (122) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return