Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Zan Wang, He-wen Liu. Impact of Zn(Ⅱ) Ions on Crystallization and Thermal Properties of Poly(lactic acid)[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 203-209. doi: 10.1063/1674-0068/cjcp2006080
Citation: Zan Wang, He-wen Liu. Impact of Zn(Ⅱ) Ions on Crystallization and Thermal Properties of Poly(lactic acid)[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 203-209. doi: 10.1063/1674-0068/cjcp2006080

Impact of Zn(Ⅱ) Ions on Crystallization and Thermal Properties of Poly(lactic acid)

doi: 10.1063/1674-0068/cjcp2006080
More Information
  • Corresponding author: Liu He-wen, E-mail: lhewen@ustc.edu.cn
  • Received Date: 2020-06-01
  • Accepted Date: 2020-08-07
  • Available Online: 2020-10-29
  • Publish Date: 2021-04-27
  • The issues of low crystallinity and slow crystallization rate of poly(lactic acid) (PLA) have been widely addressed. In this work, we find that doping PLA with Zn(Ⅱ) ions can speed up the process of crystallization of PLA. Three kinds of Zn(Ⅱ) salts (ZnCl$ _2 $, ZnSt and ZnOAc) were tested in comparison with some other ions such as Mg(Ⅱ) and Ca(Ⅱ). The increased crystallinity and crystallization rate of PLA doping with Zn(Ⅱ) are reflected in FT-IR and variable temperature Raman spectroscopy. The crystallinity is further confirmed or measured with differential scanning calorimetry and X-ray diffraction. The crystallinity rate of the PLA/ZnSt-0.4 wt% material can reach 22.46% and the crystallinity rate of the PLA/ZnOAc-0.4 wt% material can reach 24.83%, as measured with differential scanning calorimetry.

     

  • loading
  • [1]
    D. Garlotta, J. Polym. Environ. 9, 63 (2001). doi: 10.1023/A:1020200822435
    [2]
    M. Nofar, D. Sacligil, P. J. Carreau, M. R. Kamal, and M. C. Heuzey, Int. J. Biol. Macromol. 125, 307 (2019). doi: 10.1016/j.ijbiomac.2018.12.002
    [3]
    K. Hamad, M. Kaseem, M. Ayyoob, J. Joo, and F. Deri, Prog. Polym. Sci. 85, 83 (2018). doi: 10.1016/j.progpolymsci.2018.07.001
    [4]
    S. Sasaki and T. Asakura, Macromolecules 36, 8385 (2003). doi: 10.1021/ma0348674
    [5]
    J. Ahmed, Y. A. Arfat, E. Castro-Aguirre, and R. Auras, Int. J. Biol. Macromol. 86, 885 (2016). doi: 10.1016/j.ijbiomac.2016.02.034
    [6]
    S. Saeidlou, M. A. Huneault, H. B. Li, and C. B. Park, Prog. Polym. Sci. 37, 1657 (2012). doi: 10.1016/j.progpolymsci.2012.07.005
    [7]
    G. Liu, X. Zhang, and D. Wang, Adv. Mater 26, 6905 (2014). doi: 10.1002/adma.201305413
    [8]
    Y. Feng, P. Ma, P. Xu, R. Wang, W. Dong, M. Chen, and K. Joziasse, Int J. Biol. Macromol. 106, 955 (2018). doi: 10.1016/j.ijbiomac.2017.08.095
    [9]
    L. Jiang, T. F. Shen, P. W. Xu, X. Y. Zhao, X. J. Li, W. F. Dong, P. M. Ma, and M. Q. Chen, E-Polymers 16, 1 (2016). doi: 10.1515/epoly-2015-0179
    [10]
    P. Ma, Y. Xu, T. Shen, W. Dong, M. Chen, and P. J. Lemstra, Eur. Polym. J. 70, 400 (2015). doi: 10.1016/j.eurpolymj.2015.07.040
    [11]
    J. Y. Nam, M. Okamoto, H. Okamoto, M. Nakano, A. Usuki, and M. J. P. Matsuda, Polymer 47, 1340 (2006). doi: 10.1016/j.polymer.2005.12.066
    [12]
    N. Kawamoto, A. Sakai, T. Horikoshi, T. Urushihara, and E. Tobita, J Appl. Polym. Sci. 103, 198 (2007). doi: 10.1002/app.25109
    [13]
    Z. B. Tang, C. Z. Zhang, X. Q. Liu, and J. Zhu, J. Appl. Polym. Sci. 125, 1108 (2012). doi: 10.1002/app.34799
    [14]
    H. Li and M. a. J. P. Huneault, Polymer 48, 6855 (2007). doi: 10.1016/j.polymer.2007.09.020
    [15]
    M. Penco, G. Spagnoli, I. Peroni, M. A. Rahman, M. Frediani, W. Oberhauser, and A. Lazzeri, J. Appl. Polym. Sci. 122, 3528 (2011). doi: 10.1002/app.34761
    [16]
    H. Li and M. A. Huneault, J. Appl. Polym. Sci. 119, 2439 (2011). doi: 10.1002/app.32956
    [17]
    M. Mihai, M. A. Huneault, B. D. Favis, and H. B. Li, Macromol. Biosci. 7, 907 (2007). doi: 10.1002/mabi.200700080
    [18]
    L. He, F. Song, D. F. Li, X. Zhao, X. L. Wang, and Y. Z. Wang, ACS Sustain. Chem. Eng. 8, 1573 (2020). doi: 10.1021/acssuschemeng.9b06308
    [19]
    W. W. Yu, X. Z. Wang, E. Ferraris, and J. Zhang, Mater. Design 182, 108013 (2019). doi: 10.1016/j.matdes.2019.108013
    [20]
    M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos Part B-Eng. 38, 367 (2007). doi: 10.1016/j.compositesb.2006.06.010
    [21]
    A. M. Harris and E. C. Lee, J. Appl. Polym. Sci. 107, 2246 (2008). doi: 10.1002/app.27261
    [22]
    S. I. N. Ayutthaya, S. Tanpichai, W. Sangkhun, and J. Wootthikanokkhan, Int. J. Biol. Macromol. 85, 585 (2016). doi: 10.1016/j.ijbiomac.2016.01.041
    [23]
    H. Yue, J. P. Fernández-Blázquez, J. J. Vilatela, and E. Pérez, Polym. Crystal. 2, e10081 (2019).
    [24]
    J. M. Zhang, Y. X. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, Macromolecules 38, 8012 (2005). doi: 10.1021/ma051232r
    [25]
    S. Kang and S. L. Hsu, Macromolecules 34, 4542 (2001). doi: 10.1021/ma0016026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (96) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return