Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Lu Yang, Dong-yuan Du, Jing-wen Zhang, Chao Tang. A Comparative Simulation: Difference between Chemical Grafting and Physical Doping of Cellulose by Using Polysilsesquioxane[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 165-172. doi: 10.1063/1674-0068/cjcp2004058
Citation: Lu Yang, Dong-yuan Du, Jing-wen Zhang, Chao Tang. A Comparative Simulation: Difference between Chemical Grafting and Physical Doping of Cellulose by Using Polysilsesquioxane[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 165-172. doi: 10.1063/1674-0068/cjcp2004058

A Comparative Simulation: Difference between Chemical Grafting and Physical Doping of Cellulose by Using Polysilsesquioxane

doi: 10.1063/1674-0068/cjcp2004058
More Information
  • Corresponding author: Chao Tang, E-mail: swutc@swu.edu.cn
  • Received Date: 2020-04-28
  • Accepted Date: 2020-10-14
  • Available Online: 2020-11-24
  • Publish Date: 2021-04-27
  • In order to study the effect of different modification methods on polysilsesquioxane (POSS) modified cellulose, a molecular dynamics method was used to establish a pure cellulose model and a series of modified models modified by polysilsesquioxane in different ways. And their thermodynamic properties were calculated. The results showed that the performance of cellulose models was better than that of unmodified model, and the modified effect was the best when two cellulose chains were grafted onto polysilsesquioxane by chemical bond (M2 model). Compared with pure cellulose model, the cohesive energy density and solubility parameters of M2 model are increased by 9%, and the values of tensile modulus, bulk modulus, shear modulus and Cauchy pressure increased by 38.6%, 29.5%, 41.1% and 29.5%, respectively. In addition, the free volume fraction and mean square displacement of each model were calculated and analyzed in this work. Compared with the pure cellulose model, the molecular chain entanglement of cellulose was increased due to the existence of the chemical bonds in the M2 model, which made the cellulose molecular chains occupy more free volume, so that the system had a smaller free volume fraction, inhibited the chain movement of cellulose chains, and thus improved the thermal stability of cellulose.

     

  • loading
  • [1]
    D. F. Arsenea, Can. J. Chem. 49, 632 (1971).
    [2]
    R. J. Heywood, A. M. Emsley, and M. Ali, IEE P-SCI. MEAS. TECH. 147, 86 (2020).
    [3]
    A. M. Emsley, R. J. Heywood, M. Ali, and X. Xiao, IEE P-SCI. MEAS. TECH. 147, 285 (2020).
    [4]
    M. Kes and B. E. Christensen, Cellulose 20, 2003 (2013). doi: 10.1007/s10570-013-9963-x
    [5]
    J. Liu, L. J. Zhou, G. N. Wu, Y. F. Zhao, P. Liu, and Q. Peng, Proc. CSEE 19, 510 (2011).
    [6]
    X. Li, C. Tang, J. N. Wang, W. X. Tian, and D. Hu, J. Mater. Sci. 54, 8556 (2019). doi: 10.1007/s10853-019-03476-x
    [7]
    B. B. Konar, S. K. Roy, and T. K. Pariya, J. Macromal. Sci. 47, 416 (2010). doi: 10.1080/10601321003659531
    [8]
    R. J. Liao, C. Lv, L. J. Yang, Y. Y. Zhang, W. Q. Wu, and C. Tang, J. Nanometer. 2013, 373959 (2013).
    [9]
    O. Rodríguez-Uicab, F. Avilés, P. I. Gonzalez-Chi, G. Canché-Escamilla, S. Duarte-Aranda, M. Yazdani-Pedram, P. Toro, F. Gamboa, M. A. Mazo, A. Nistal, and J. Rubio, Appl. Surf. Sci. 385, 379 (2016). doi: 10.1016/j.apsusc.2016.05.037
    [10]
    C. Tang, S. Zhang, J. Xie, and C. Lv, IEEE Trans. Dielectr. Electr. Insul. 24, 1018 (2017). doi: 10.1109/TDEI.2017.006315
    [11]
    A. Fatona, R. M. Berry, M. A. Brook, and J. M. Moran-Mirabal, Chem. Mater. 30, 2424 (2018).
    [12]
    C. Tang, S. Zhang, X. B. Wang, and J. Hao, Cellulose 25, 3619 (2018). doi: 10.1007/s10570-018-1813-4
    [13]
    B. B. Liu, H. L. Wang, X. Y. Guo, R. J. Yang, and X. M. Li, Polymers 11, 770 (2019). doi: 10.3390/polym11050770
    [14]
    C. H. Xue, Q. Q. Fan, X. J. Guo, Q. F. An, and S. T. Jia, Appl. Surf. Sci. 465, 241 (2019). doi: 10.1016/j.apsusc.2018.09.156
    [15]
    K. N. Raftopoulos, J. Pagacz, J. Ozimek, S. Koutsoumpis, S. Michalowski, E. Hebda, J. Pielichowski, and K. Pielichowski, Polym. Bull. 76, 2887 (2019). doi: 10.1007/s00289-018-2528-2
    [16]
    W. Chen, C. G. Lickfield, and Q. C. Yang, Polymer 45, 1063 (2004). doi: 10.1016/j.polymer.2003.11.020
    [17]
    [18]
    R. J. Liao, S. Nie, X. Zuou, K. Wang, L. Yuan, L. J. Yang, and H. C. Cheng, Proc. CSEE 33, (2013). http://www.sciencedirect.com/science/article/pii/S0928493113002737
    [19]
    S. Wu, H. Y. Zhan, H. M. Wang, and Y. Ju, Chin. J. Chem. Phys. 25, 191 (2012). doi: 10.1088/1674-0068/25/02/191-198
    [20]
    D. N. Theodorou and U. Wsuter, Macromolecules 18, 1467 (1985). doi: 10.1021/ma00149a018
    [21]
    S. Zhang, C. Tang, J. Y. Xie, and Q. Zhou, Appl. Phys. Lett. 17, 2902 (2016).
    [22]
    C. Tang, X. Li, Y. J. Tang, J. Zeng, J. Y. Xie, and B. F. Xiong, Nanotechnology 31, 165702 (2020). doi: 10.1088/1361-6528/ab662c
    [23]
    M. Bergenstahle, L. A. Berglund, and K. Mazeau, J. Phys. Chem. B 111, 9138 (2007) doi: 10.1021/jp072258i
    [24]
    H. F. Mark, Encyclopedia of Polymer Science and Technology—Plastics, Resins, Rubbers, Fibers, New York: Wiley (1982).
    [25]
    W. Chen, G. C. Lickfield, and C. Q. Yang, Polymer 45, 1063 (2004). doi: 10.1016/j.polymer.2003.11.020
    [26]
    W. Q. Zhang, H. Li, L. Gao, Q. J. Zhang, W. H. Zhong, G. Sui, and X. P. Yang, Polym. Composite 39, E945 (2018). doi: 10.1002/pc.24352
    [27]
    W. A. Lee and J. H. Sewell, J. Aappl. Polym. Sci. 12, 1397 (1961).
    [28]
    K. Marcinin and A. Romanov, Polymer 16, 177 (1975). doi: 10.1016/0032-3861(75)90049-X
    [29]
    J. E. Mark and R. A. Orwol, Polymer Data Handbook, New York: Oxford University Press, (1999).
    [30]
    E. Kojima, M. Yamasaki, K. Imaeda, C. G. Lee, T. Sugimoto, and Y. Sasaki, J. Mater. Sci. 55, 5038 (2020). doi: 10.1007/s10853-020-04346-7
    [31]
    Z. J. Liu, X. W. Sun, C. R. Zhang, J. B. Hu, T. Song, and J. H. Qi, Chin. J. Chem. Phys. 24, 703 (2011). doi: 10.1088/1674-0068/24/06/703-710
    [32]
    [33]
    S. T. Li, W. W. Wang, S.H. Yu, and H. G. Sun, IEEE Trans. Dielectr. Electr. Insul. 21, 519 (2014). doi: 10.1109/TDEI.2013.004131
    [34]
    B. X. Du, J. G. Su, and T. Han, IEEE Trans. Dielectr. Electr. Insul. 25, 13 (2018). doi: 10.1109/TDEI.2018.006593
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (109) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return