Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Xie Dong-hua, Ge Xiao, Qin Wen-xiu, Zhang Yun-xia. NH$ _\textbf{2} $-MIL-53(Al) for Simultaneous Removal and Detection of Fluoride Anions[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 227-237. doi: 10.1063/1674-0068/cjcp2004054
Citation: Xie Dong-hua, Ge Xiao, Qin Wen-xiu, Zhang Yun-xia. NH$ _\textbf{2} $-MIL-53(Al) for Simultaneous Removal and Detection of Fluoride Anions[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 227-237. doi: 10.1063/1674-0068/cjcp2004054

NH$ _\textbf{2} $-MIL-53(Al) for Simultaneous Removal and Detection of Fluoride Anions

doi: 10.1063/1674-0068/cjcp2004054
More Information
  • Corresponding author: Wen-xiu Qin, E-mail: wxqin@issp.ac.cn; Yun-xia Zhang, E-mail: yxzhang@issp.ac.cn
  • Received Date: 2020-04-21
  • Accepted Date: 2020-05-31
  • Available Online: 2020-06-01
  • Publish Date: 2021-04-27
  • To address the limitations of the separate fluoride removal or detection in the existing materials, herein, amino-decorated metal organic frameworks NH$ _2 $-MIL-53(Al) have been succinctly fabricated by a sol-hydrothermal method for simultaneous removal and determination of fluoride. As a consequence, the proposed NH$ _2 $-MIL-53(Al) features high uptake capacity (202.5 mg/g) as well as fast adsorption rate, being capable of treating 5 ppm of fluoride solution to below the permitted threshold in drinking water within 15 min. Specifically, the specific binding between fluoride and NH$ _2 $-MIL-53(Al) results in the release of fluorescent ligand NH$ _2 $-BDC, conducive to the determination of fluoride via a concentration-dependent fluorescence enhancement effect. As expected, the resulting NH$ _2 $-MIL-53(Al) sensor exhibits selective and sensitive detection (with the detection limit of 0.31 $ \mu $mol/L) toward fluoride accompanied with a wide response interval (0.5-100 $ \mu $mol/L). More importantly, the developed sensor can be utilized for fluoride detection in practical water systems with satisfying recoveries from 89.6% to 116.1%, confirming its feasibility in monitoring the practical fluoride-contaminated waters.


  • loading
  • [1]
    M. S. Gaikwad and C. Balomajumder, Sep. Purif. Technol. 186, 272 (2017). doi: 10.1016/j.seppur.2017.06.017
    A. Bhatnagar, E. Kumar, and M. Sillanpää, Chem. Eng. J. 171, 811 (2011). doi: 10.1016/j.cej.2011.05.028
    S. Ayoob and A. K. Gupta, Crit. Rev. Environ. Sci. Technol. 36, 433 (2006). doi: 10.1080/10643380600678112
    S. X. Wang, Z. H. Wang, X. T. Cheng, J. Li, Z. P. Sang, and X. D. Zhang, Environ. Health Perspect. 115, 643 (2007). doi: 10.1289/ehp.9270
    M. H. Trivedi, R. J. Verna, N. J. Chinoy, R. S. Patel, and N. G. Sathawara, Fluoride 40, 178 (2007).
    P. P. Singh, M. K. Barjatiya, S. Dhing, R. Bhatnagar, S. Kothari, and V. Dhar, Urol. Res. 29, 238 (2001). doi: 10.1007/s002400100192
    M. Amini, K. Mueller, K. C. Abbaspour, T. Rosenberg, M. Afyuni, K. N. Moller, M. Sarr, and C. A. Johnson, Environ. Sci. Technol. 42, 3662 (2008). doi: 10.1021/es071958y
    S. S. Dash, M. K. Sahu, E. Sahu, and R. K. Patel, New J. Chem. 39, 7300 (2015). doi: 10.1039/C5NJ01030F
    P. I. Ndiaye, P. Moulin, L. Dominguez, J. C. Millet, and F. Charbit, Desalination 173, 25 (2005). doi: 10.1016/j.desal.2004.07.042
    Z. Amor, B. Bernard, N. Mameri, M. Taky, S. Nicolas, and A. Elmidaoui, Desalination 133, 215 (2001). doi: 10.1016/S0011-9164(01)00102-3
    R. De Marco, G. Clarke, and B. Pejcic, Electroanalysis 19, 1987 (2007). doi: 10.1002/elan.200703916
    S. Sole and F. P. Gabbaï, Chem. Commun. 11, 1284 (2004).
    M. C. Breadmore, A. S. Palmer, M. Curran, M. Macka, N. Avdalovic, and P. R. Haddad, Anal. Chem. 74, 2112 (2002). doi: 10.1021/ac011217u
    Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, and B. Wang, J. Am. Chem. Soc. 136, 15485 (2014). doi: 10.1021/ja508962m
    M. S. Li, Z. Y. Lin, and Q. W. Chen, Chin. J. Chem. Phys. 32, 731 (2019). doi: 10.1063/1674-0068/cjcp1805104
    M. Yoon, K. Suh, S. Natarajan, and K. Kim, Angew. Chem. Int. Ed. 52, 2688 (2013). doi: 10.1002/anie.201206410
    J. Gong, W. Li, and S. Li, Chin. J. Chem. Phys. 31, 52 (2018). doi: 10.1063/1674-0068/31/cjcp1705108
    M. H. Teplensky, M. Fantham, P. Li, T. C. Wang, J. P. Mehta, L. J. Young, P. Z. Moghadam, J. T. Hupp, O. K. Farha, C. F. Kaminski, and D. Fairen-Jimenez, J. Am. Chem. Soc. 139, 7522 (2017). doi: 10.1021/jacs.7b01451
    L. Zhang, J. Wang, X. Y. Ren, W. T. Zhang, T. S. Zhang, X. N. Liu, T. Du, T. Li and J. L. Wang, J. Mater. Chem. A 6, 21029 (2018). doi: 10.1039/C8TA07349J
    X. J. Guo, Q. Liu, J. Y. Liu, H. S. Zhang, J. Yu, R. R. Chen, D. L. Song, R. M. Li, and J. Wang, Appl. Surf. Sci. 491, 640 (2019). doi: 10.1016/j.apsusc.2019.06.108
    D. H. Xie, Y. Ma, Y. Gu, H. J. Zhou, H. M. Zhang, G. Z. Wang, Y. X. Zhang, and H. J. Zhao, J. Mater. Chem. A 5, 23794 (2017). doi: 10.1039/C7TA07934F
    L. X. Zheng, S. C. Han, H. Liu, P. P. Yu, and X. S. Fang, Small 11, 1527 (2016).
    T. H. Zhang, T. Yan, G. Q. Zhao, W. J. H. Hu, and F. P. Jiao, Chin. J. Chem. Phys. 32, 535 (2019).
    P. P. Yu, Z. M. Zhang, L. X. Zheng, F. Teng, and L. F. Hu, Adv. Energy Mater. 6, 1601111 (2016). doi: 10.1002/aenm.201601111
    T. Lu, L. C. Zhang, M. X. Sun, D. Y. Deng, Y. Y. Su, and Y. Lv, Anal. Chem. 88, 3413 (2016). doi: 10.1021/acs.analchem.6b00253
    M. Mubashir, Y. F. Yeong, T. L. Chew, and K. K. Lau, Ind. Eng. Chem. Res. 58, 7120 (2019). doi: 10.1021/acs.iecr.8b05773
    P. Mondal and M. K. Purkait, Chemosphere 235, 391 (2019). doi: 10.1016/j.chemosphere.2019.06.189
    C. H. Xu, J. Y. Li, F. J. He, Y. L. Cui, H. Y. Jin, and S. Hou, RSC Adv. 6, 97376 (2016). doi: 10.1039/C6RA19390K
    A. Ghosh and G. Das, New J. Chem. 44, 1354 (2020). doi: 10.1039/C9NJ05861C
    L. Chen, K. S. Zhang, J. Y. He, W. H. Xu, X. J. Huang, and J. H. Liu, Chem. Eng. J. 285, 616 (2016). doi: 10.1016/j.cej.2015.10.036
    J. Y. He, X. G. Cai, K. Chen, Y. L. Li, K. S. Zhang, Z. Jin, F. L. Meng, N. Liu, X. G. Wang, L. T. Kong, X. J. Huang, and J. H. Liu, J. Colloid Interface Sci. 484, 162 (2016). doi: 10.1016/j.jcis.2016.08.074
    P. Wu, L. Xia, Y. Liu, J. S. Wu, Q. Y. Chen, and S. X. Song, ACS Sustainable Chem. Eng. 6, 16287 (2018). doi: 10.1021/acssuschemeng.8b03209
    X. D. Zhao, D. H. Liu, H. L. Huang, W. J. Zhang, Q. Y. Yang, and C. L. Zhong, Microporous Mesoporous Mater. 185, 72 (2014). doi: 10.1016/j.micromeso.2013.11.002
    Z. Y. Bai, C. Z. Hu, H. J. Liu, and J. H. Qu, J. Colloid Interface Sci. 539, 146 (2019). doi: 10.1016/j.jcis.2018.12.062
    D. W. Cho, Y. S. Han, J. H. Lee, J. Y. Jang, G. J. Yim, S. Y. Cho, J. S. Lee, and Y. W. Cheng, Chemosphere 247, 125899 (2020). doi: 10.1016/j.chemosphere.2020.125899
    J. A. Arcibar-Orozco, A. I. Flores, J. R. Rangel-Mendez, and P. E. Díaz-Flores, Environ. Technol. 41, 1254 (2020).
    D. J. Kang, X. L. Yu, M. F. Ge, M. Y. Lin, X. Q. Yang, and Y. Y. Jing, Chem. Eng. J. 345, 252 (2018). doi: 10.1016/j.cej.2018.03.174
    F. Ahmed, S. R. Ghosh, S. Halder, S. Guin, S. M. Alam, P. P. Ray, A. D. Jana, and M. H. Mir, New J. Chem. 43, 2710 (2019). doi: 10.1039/C8NJ05526B
    J. Yang, Y. Dai, X. Y. Zhu, Z. Wang, Y. S. Li, Q. X. Zhuang, J. L. Shi, and J. L. Gu, J. Mater. Chem. A 3, 7445 (2015). doi: 10.1039/C5TA00077G
    F. M. Hinterholzinger, B. Rühle, S. Wuttke, K. Karaghiosoff, and T. Bein, Sci. Rep. 3, 2562 (2013). doi: 10.1038/srep02562
    C. W. Wang, S. Yang, M. Yi, C. H. Liu, Y. J. Wang, J. S. Li, Y. H. Li, and R. H. Yang, ACS Appl. Mater. Interfaces 6, 9768 (2014). doi: 10.1021/am502142d
    X. Q Zhou, R. Lai, H. Li, C. I. Stains, X. Q. Zhou, R. Lai, H. Li, and C. I. Stains, Anal. Chem. 87, 4081 (2015). doi: 10.1021/acs.analchem.5b00430
    Z. R. Yang, M. M. Wang, X. S. Wang, and X. B. Yin, Anal. Chem. 89, 1930 (2017). doi: 10.1021/acs.analchem.6b04421
    M. P. Bhat, P. Patil, S. K. Nataraj, T. Altalhi, H. Y. Jung, D. Losic, and M. D. Kurkuri, Chem. Eng. J. 303, 14 (2016). doi: 10.1016/j.cej.2016.05.113
    I. Hussain, K. U. Ahamad, and P. Nath, Anal. Chem. 89, 767 (2017). doi: 10.1021/acs.analchem.6b03424
    A. Balamurugan and H. Lee, Sens. Actuators B 216, 80 (2015). doi: 10.1016/j.snb.2015.04.026
    L. Q. Lu, M. Y. Ma, T. Tan, X. K. Tian, Z. X. Zhou, C. Yang, and Y. Li, Sens. Actuators B 270, 291 (2018). doi: 10.1016/j.snb.2018.05.038
    N. Tien-Binh, H. Vinh-Thang, X. Y. Chen, D. Rodrigue, and S. Kaliaguine, J. Mater. Chem. A 3, 15202 (2015). doi: 10.1039/C5TA01597A
    T. Lu, H. J. Song, X. Q. Dong, J. Y. Hu, and Y. Lv, J. Mater. Chem. C 5, 9465 (2017).
    W. Z. Gai, Z. Y. Deng, and Y. Shi, RSC Adv. 5, 84223 (2015). doi: 10.1039/C5RA14706A
    X. S. Zeng, H. L. Xu, Y. C. Xu, X. Q. Li, Z. Y. Nie, S. Z. Gao, and D. R. Xiao, Inorg. Chem. Front. 5, 1622 (2018).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (266) PDF downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint