Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Xie Dong-hua, Ge Xiao, Qin Wen-xiu, Zhang Yun-xia. NH$ _\textbf{2} $-MIL-53(Al) for Simultaneous Removal and Detection of Fluoride Anions[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 227-237. doi: 10.1063/1674-0068/cjcp2004054
Citation: Xie Dong-hua, Ge Xiao, Qin Wen-xiu, Zhang Yun-xia. NH$ _\textbf{2} $-MIL-53(Al) for Simultaneous Removal and Detection of Fluoride Anions[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 227-237. doi: 10.1063/1674-0068/cjcp2004054

NH$ _\textbf{2} $-MIL-53(Al) for Simultaneous Removal and Detection of Fluoride Anions

doi: 10.1063/1674-0068/cjcp2004054
More Information
  • Corresponding author: Wen-xiu Qin, E-mail: wxqin@issp.ac.cn; Yun-xia Zhang, E-mail: yxzhang@issp.ac.cn
  • Received Date: 2020-04-21
  • Accepted Date: 2020-05-31
  • Available Online: 2020-06-01
  • Publish Date: 2021-04-27
  • To address the limitations of the separate fluoride removal or detection in the existing materials, herein, amino-decorated metal organic frameworks NH$ _2 $-MIL-53(Al) have been succinctly fabricated by a sol-hydrothermal method for simultaneous removal and determination of fluoride. As a consequence, the proposed NH$ _2 $-MIL-53(Al) features high uptake capacity (202.5 mg/g) as well as fast adsorption rate, being capable of treating 5 ppm of fluoride solution to below the permitted threshold in drinking water within 15 min. Specifically, the specific binding between fluoride and NH$ _2 $-MIL-53(Al) results in the release of fluorescent ligand NH$ _2 $-BDC, conducive to the determination of fluoride via a concentration-dependent fluorescence enhancement effect. As expected, the resulting NH$ _2 $-MIL-53(Al) sensor exhibits selective and sensitive detection (with the detection limit of 0.31 $ \mu $mol/L) toward fluoride accompanied with a wide response interval (0.5-100 $ \mu $mol/L). More importantly, the developed sensor can be utilized for fluoride detection in practical water systems with satisfying recoveries from 89.6% to 116.1%, confirming its feasibility in monitoring the practical fluoride-contaminated waters.

     

  • loading
  • [1]
    M. S. Gaikwad and C. Balomajumder, Sep. Purif. Technol. 186, 272 (2017). doi: 10.1016/j.seppur.2017.06.017
    [2]
    A. Bhatnagar, E. Kumar, and M. Sillanpää, Chem. Eng. J. 171, 811 (2011). doi: 10.1016/j.cej.2011.05.028
    [3]
    S. Ayoob and A. K. Gupta, Crit. Rev. Environ. Sci. Technol. 36, 433 (2006). doi: 10.1080/10643380600678112
    [4]
    S. X. Wang, Z. H. Wang, X. T. Cheng, J. Li, Z. P. Sang, and X. D. Zhang, Environ. Health Perspect. 115, 643 (2007). doi: 10.1289/ehp.9270
    [5]
    M. H. Trivedi, R. J. Verna, N. J. Chinoy, R. S. Patel, and N. G. Sathawara, Fluoride 40, 178 (2007).
    [6]
    P. P. Singh, M. K. Barjatiya, S. Dhing, R. Bhatnagar, S. Kothari, and V. Dhar, Urol. Res. 29, 238 (2001). doi: 10.1007/s002400100192
    [7]
    M. Amini, K. Mueller, K. C. Abbaspour, T. Rosenberg, M. Afyuni, K. N. Moller, M. Sarr, and C. A. Johnson, Environ. Sci. Technol. 42, 3662 (2008). doi: 10.1021/es071958y
    [8]
    S. S. Dash, M. K. Sahu, E. Sahu, and R. K. Patel, New J. Chem. 39, 7300 (2015). doi: 10.1039/C5NJ01030F
    [9]
    P. I. Ndiaye, P. Moulin, L. Dominguez, J. C. Millet, and F. Charbit, Desalination 173, 25 (2005). doi: 10.1016/j.desal.2004.07.042
    [10]
    Z. Amor, B. Bernard, N. Mameri, M. Taky, S. Nicolas, and A. Elmidaoui, Desalination 133, 215 (2001). doi: 10.1016/S0011-9164(01)00102-3
    [11]
    R. De Marco, G. Clarke, and B. Pejcic, Electroanalysis 19, 1987 (2007). doi: 10.1002/elan.200703916
    [12]
    S. Sole and F. P. Gabbaï, Chem. Commun. 11, 1284 (2004).
    [13]
    M. C. Breadmore, A. S. Palmer, M. Curran, M. Macka, N. Avdalovic, and P. R. Haddad, Anal. Chem. 74, 2112 (2002). doi: 10.1021/ac011217u
    [14]
    Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, and B. Wang, J. Am. Chem. Soc. 136, 15485 (2014). doi: 10.1021/ja508962m
    [15]
    M. S. Li, Z. Y. Lin, and Q. W. Chen, Chin. J. Chem. Phys. 32, 731 (2019). doi: 10.1063/1674-0068/cjcp1805104
    [16]
    M. Yoon, K. Suh, S. Natarajan, and K. Kim, Angew. Chem. Int. Ed. 52, 2688 (2013). doi: 10.1002/anie.201206410
    [17]
    J. Gong, W. Li, and S. Li, Chin. J. Chem. Phys. 31, 52 (2018). doi: 10.1063/1674-0068/31/cjcp1705108
    [18]
    M. H. Teplensky, M. Fantham, P. Li, T. C. Wang, J. P. Mehta, L. J. Young, P. Z. Moghadam, J. T. Hupp, O. K. Farha, C. F. Kaminski, and D. Fairen-Jimenez, J. Am. Chem. Soc. 139, 7522 (2017). doi: 10.1021/jacs.7b01451
    [19]
    L. Zhang, J. Wang, X. Y. Ren, W. T. Zhang, T. S. Zhang, X. N. Liu, T. Du, T. Li and J. L. Wang, J. Mater. Chem. A 6, 21029 (2018). doi: 10.1039/C8TA07349J
    [20]
    X. J. Guo, Q. Liu, J. Y. Liu, H. S. Zhang, J. Yu, R. R. Chen, D. L. Song, R. M. Li, and J. Wang, Appl. Surf. Sci. 491, 640 (2019). doi: 10.1016/j.apsusc.2019.06.108
    [21]
    D. H. Xie, Y. Ma, Y. Gu, H. J. Zhou, H. M. Zhang, G. Z. Wang, Y. X. Zhang, and H. J. Zhao, J. Mater. Chem. A 5, 23794 (2017). doi: 10.1039/C7TA07934F
    [22]
    L. X. Zheng, S. C. Han, H. Liu, P. P. Yu, and X. S. Fang, Small 11, 1527 (2016).
    [23]
    T. H. Zhang, T. Yan, G. Q. Zhao, W. J. H. Hu, and F. P. Jiao, Chin. J. Chem. Phys. 32, 535 (2019).
    [24]
    P. P. Yu, Z. M. Zhang, L. X. Zheng, F. Teng, and L. F. Hu, Adv. Energy Mater. 6, 1601111 (2016). doi: 10.1002/aenm.201601111
    [25]
    T. Lu, L. C. Zhang, M. X. Sun, D. Y. Deng, Y. Y. Su, and Y. Lv, Anal. Chem. 88, 3413 (2016). doi: 10.1021/acs.analchem.6b00253
    [26]
    M. Mubashir, Y. F. Yeong, T. L. Chew, and K. K. Lau, Ind. Eng. Chem. Res. 58, 7120 (2019). doi: 10.1021/acs.iecr.8b05773
    [27]
    P. Mondal and M. K. Purkait, Chemosphere 235, 391 (2019). doi: 10.1016/j.chemosphere.2019.06.189
    [28]
    C. H. Xu, J. Y. Li, F. J. He, Y. L. Cui, H. Y. Jin, and S. Hou, RSC Adv. 6, 97376 (2016). doi: 10.1039/C6RA19390K
    [29]
    A. Ghosh and G. Das, New J. Chem. 44, 1354 (2020). doi: 10.1039/C9NJ05861C
    [30]
    L. Chen, K. S. Zhang, J. Y. He, W. H. Xu, X. J. Huang, and J. H. Liu, Chem. Eng. J. 285, 616 (2016). doi: 10.1016/j.cej.2015.10.036
    [31]
    J. Y. He, X. G. Cai, K. Chen, Y. L. Li, K. S. Zhang, Z. Jin, F. L. Meng, N. Liu, X. G. Wang, L. T. Kong, X. J. Huang, and J. H. Liu, J. Colloid Interface Sci. 484, 162 (2016). doi: 10.1016/j.jcis.2016.08.074
    [32]
    P. Wu, L. Xia, Y. Liu, J. S. Wu, Q. Y. Chen, and S. X. Song, ACS Sustainable Chem. Eng. 6, 16287 (2018). doi: 10.1021/acssuschemeng.8b03209
    [33]
    X. D. Zhao, D. H. Liu, H. L. Huang, W. J. Zhang, Q. Y. Yang, and C. L. Zhong, Microporous Mesoporous Mater. 185, 72 (2014). doi: 10.1016/j.micromeso.2013.11.002
    [34]
    Z. Y. Bai, C. Z. Hu, H. J. Liu, and J. H. Qu, J. Colloid Interface Sci. 539, 146 (2019). doi: 10.1016/j.jcis.2018.12.062
    [35]
    D. W. Cho, Y. S. Han, J. H. Lee, J. Y. Jang, G. J. Yim, S. Y. Cho, J. S. Lee, and Y. W. Cheng, Chemosphere 247, 125899 (2020). doi: 10.1016/j.chemosphere.2020.125899
    [36]
    J. A. Arcibar-Orozco, A. I. Flores, J. R. Rangel-Mendez, and P. E. Díaz-Flores, Environ. Technol. 41, 1254 (2020).
    [37]
    D. J. Kang, X. L. Yu, M. F. Ge, M. Y. Lin, X. Q. Yang, and Y. Y. Jing, Chem. Eng. J. 345, 252 (2018). doi: 10.1016/j.cej.2018.03.174
    [38]
    F. Ahmed, S. R. Ghosh, S. Halder, S. Guin, S. M. Alam, P. P. Ray, A. D. Jana, and M. H. Mir, New J. Chem. 43, 2710 (2019). doi: 10.1039/C8NJ05526B
    [39]
    J. Yang, Y. Dai, X. Y. Zhu, Z. Wang, Y. S. Li, Q. X. Zhuang, J. L. Shi, and J. L. Gu, J. Mater. Chem. A 3, 7445 (2015). doi: 10.1039/C5TA00077G
    [40]
    F. M. Hinterholzinger, B. Rühle, S. Wuttke, K. Karaghiosoff, and T. Bein, Sci. Rep. 3, 2562 (2013). doi: 10.1038/srep02562
    [41]
    C. W. Wang, S. Yang, M. Yi, C. H. Liu, Y. J. Wang, J. S. Li, Y. H. Li, and R. H. Yang, ACS Appl. Mater. Interfaces 6, 9768 (2014). doi: 10.1021/am502142d
    [42]
    X. Q Zhou, R. Lai, H. Li, C. I. Stains, X. Q. Zhou, R. Lai, H. Li, and C. I. Stains, Anal. Chem. 87, 4081 (2015). doi: 10.1021/acs.analchem.5b00430
    [43]
    Z. R. Yang, M. M. Wang, X. S. Wang, and X. B. Yin, Anal. Chem. 89, 1930 (2017). doi: 10.1021/acs.analchem.6b04421
    [44]
    M. P. Bhat, P. Patil, S. K. Nataraj, T. Altalhi, H. Y. Jung, D. Losic, and M. D. Kurkuri, Chem. Eng. J. 303, 14 (2016). doi: 10.1016/j.cej.2016.05.113
    [45]
    I. Hussain, K. U. Ahamad, and P. Nath, Anal. Chem. 89, 767 (2017). doi: 10.1021/acs.analchem.6b03424
    [46]
    A. Balamurugan and H. Lee, Sens. Actuators B 216, 80 (2015). doi: 10.1016/j.snb.2015.04.026
    [47]
    L. Q. Lu, M. Y. Ma, T. Tan, X. K. Tian, Z. X. Zhou, C. Yang, and Y. Li, Sens. Actuators B 270, 291 (2018). doi: 10.1016/j.snb.2018.05.038
    [48]
    N. Tien-Binh, H. Vinh-Thang, X. Y. Chen, D. Rodrigue, and S. Kaliaguine, J. Mater. Chem. A 3, 15202 (2015). doi: 10.1039/C5TA01597A
    [49]
    T. Lu, H. J. Song, X. Q. Dong, J. Y. Hu, and Y. Lv, J. Mater. Chem. C 5, 9465 (2017).
    [50]
    W. Z. Gai, Z. Y. Deng, and Y. Shi, RSC Adv. 5, 84223 (2015). doi: 10.1039/C5RA14706A
    [51]
    X. S. Zeng, H. L. Xu, Y. C. Xu, X. Q. Li, Z. Y. Nie, S. Z. Gao, and D. R. Xiao, Inorg. Chem. Front. 5, 1622 (2018).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (266) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return