Volume 34 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
Lin Chen, Lei Wang, Min Zheng, Lin Wang. Solvent Dependence of Photophysical and Photochemical Behaviors of Thioxanthen-9-one[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 188-196. doi: 10.1063/1674-0068/cjcp2004048
Citation: Lin Chen, Lei Wang, Min Zheng, Lin Wang. Solvent Dependence of Photophysical and Photochemical Behaviors of Thioxanthen-9-one[J]. Chinese Journal of Chemical Physics , 2021, 34(2): 188-196. doi: 10.1063/1674-0068/cjcp2004048

Solvent Dependence of Photophysical and Photochemical Behaviors of Thioxanthen-9-one

doi: 10.1063/1674-0068/cjcp2004048
More Information
  • Corresponding author: Chen Lin, E-mail: chenlin@hfnu.edu.cn
  • Received Date: 2020-04-28
  • Accepted Date: 2020-06-14
  • Available Online: 2020-08-03
  • Publish Date: 2021-04-27
  • The photophysical and photochemical behaviors of thioxanthen-9-one (TX) in different solvents have been studied using nanosecond transient absorption spectroscopy. A unique absorption of the triplet state $ ^3 $TX$ ^* $ is observed, which involves two components, $ ^3 $n$ \pi $$ ^* $ and $ ^3 $$ \pi\pi^* $ states. The $ ^3 $$ \pi\pi^* $ component contributes more to the $ ^3 $TX$ ^* $ when increasing the solvent polarity. The self-quenching rate constant $ k_{ \rm{sq}} $ of $ ^3 $TX$ ^* $ is decreased in the order of CH$ _3 $CN, CH$ _3 $CN/CH$ _3 $OH (1:1), and CH$ _3 $CN/H$ _2 $O (1:1), which might be caused by the exciplex formed from hydrogen bond interaction. In the presence of diphenylamine (DPA), the quenching of $ ^3 $TX$ ^* $ happens efficiently via electron transfer, producing the TX$ ^\cdot $$ ^- $ anion and DPA$ ^{\cdot} $$ ^+ $ cation radicals. Because of insignificant solvent effects on the electron transfer, the electron affinity of the $ ^3 $n$ \pi $$ ^* $ state is proved to be approximately equal to that of the $ ^3 $$ \pi\pi^* $ state. However, a solvent dependence is found in the dynamic decay of TX$^{{ \cdot ^ - }}$ anion radical. In the strongly acid aqueous acetonitrile (pH = 3.0), a dynamic equilibrium between protonated and unprotonated TX is definitely observed. Once photolysis, $ ^3 $TXH$ ^{+*} $ is produced, which contributes to the new band at 520 nm.

     

  • loading
  • [1]
    J. C. Dalton and F. C. Mongomery, J. Am. Chem. Soc. 96, 6230 (1974). doi: 10.1021/ja00826a072
    [2]
    J. C. Scaiano, J. Am. Chem. Soc. 102, 7747 (1980). doi: 10.1021/ja00546a018
    [3]
    C. Ley, F. Morlet-Savary, P. Jacques, and J. P. Fouassier, Chem. Phys. 255, 335 (2000). doi: 10.1016/S0301-0104(00)00056-2
    [4]
    M. V. Encinas, A. M. Rufs, T. Corrales, F. Catalina, C. Peinado, K. Schmith, M. G. Neumann, and N. S. Allen, Polymer 43, 3909 (2002). doi: 10.1016/S0032-3861(02)00211-2
    [5]
    X. T. Zhao, W. Q. Huang, D. D. Song, R. X. Lin, H. Huang, J. J. Huang, B. Wu, Y. G. Huang, and G. D. Ye, J. Mol. Model. 26, 56 (2020). doi: 10.1007/s00894-020-4300-4
    [6]
    S. Kayal, K. Roy, Y. A. Lakshmanna, and S. Umapathy, J. Phys. Chem. A 122, 6048 (2018).
    [7]
    R. Mundt, T. Villnow, C. T. Ziegenbein, P. Gilch, C. Marianb, and V. R. Constapel, Phys. Chem. Chem. Phys. 18, 6637 (2016). doi: 10.1039/C5CP06849E
    [8]
    G. Angulo, J. Grilj, E. Vauthey, l. Serrano-Andres, O. Rubio-Pons, and P. Jacques, Chem. Phys. Chem. 11, 480 (2010). doi: 10.1002/cphc.200900654
    [9]
    E. Krystkowiak, A. Maciejewski, and J. Kubicki, Chem. Phys. Chem. 7, 597 (2006). doi: 10.1002/cphc.200500375
    [10]
    G. C. Ferreira, C. C. Schmitt, and M. G. Neumann, J. Braz. Chem. Soc. 17, 905 (2006). doi: 10.1590/S0103-50532006000500013
    [11]
    R. W. Yip, A. G. Szabo, and P. K. Tolg, J. Am. Chem. Soc. 95, 4471 (1973). doi: 10.1021/ja00794a081
    [12]
    M. G. Neumann, M. H. Gehlen, M. V. Encinas, N. S. Allen, T. Corrales, C. Peinado, and F. Catalina, J. Chem. Soc. Fraday Trans. 93, 1517 (1997). doi: 10.1039/a607264j
    [13]
    S. F. Yates and G. B. Schuster, J. Org. Chem. 49, 3349 (1984). doi: 10.1021/jo00192a019
    [14]
    J. P. Fouassier and S. K. Wu, J. Appl. Polym. Sci. 44, 1779 (1992). doi: 10.1002/app.1992.070441010
    [15]
    J. P. Fouassier and D. Ruhlmann, Eur. Polym. J. 29, 505 (1993). doi: 10.1016/0014-3057(93)90007-3
    [16]
    J. P. Fouassier, D. J. Lougnot, I. Zuchowicz, P. N. Green, H. J. Timpe, K. P. Kronfeld, and V. J. Muller, Photochem. 36, 347 (1987). doi: 10.1016/0047-2670(87)80025-4
    [17]
    N. S. Allen, E. M. Howells, E. Lam, F. Cataline, P. N. Green, W. A. Green, and W. Chen, Eur. Polym. J. 24, 591 (1988). doi: 10.1016/0014-3057(88)90055-9
    [18]
    D. J. Lougnot, C. Turck, and J. P. Fouassier, Macromolecules 22, 108 (1989). doi: 10.1021/ma00191a022
    [19]
    N. S. Allen, F. Cataline, J. L. Mateo, R. Sastre, W. Chen, P. N. Green, and W. A. Green, Polym. Mater. Sci. Eng. 60, 10 (1989).
    [20]
    N. Mataga, M. Ottolenghi, Molecular Association, Vol. 2, R. Forster, Ed., New York: Academic Press, 1 (1979).
    [21]
    A. Z. Weller, Phys. Chem. (Munich), 130, 129 (1982). doi: 10.1524/zpch.1982.130.2.129
    [22]
    T. Okada, T. Mori, and N. Mataga, Bull. Chem. Soc. Jpn. 49, 3398 (1976). doi: 10.1246/bcsj.49.3398
    [23]
    S. F. Yates and G. B. Schuster, J. Org. Chem. 49, 3349 (1984). doi: 10.1021/jo00192a019
    [24]
    J. P. Fouassier and D. J. Lougnot, J. Appl. Polym. Sci. 34, 477 (1987). doi: 10.1002/app.1987.070340203
    [25]
    F. Scigalski and J. Paczkowski, Macromol. Chem. Phys. 209, 1872 (2008). doi: 10.1002/macp.200800122
    [26]
    S. G. Cohen, A. Parola, and G. H. Parsons, Chem. Rev. 73, 141 (1973). doi: 10.1021/cr60282a004
    [27]
    Q. Q. Zhu, W. Schnabel, and P. Jacques, J. Chem. Soc., Faraday Trans. 87, 1531 (1991). doi: 10.1039/ft9918701531
    [28]
    X. S. Jiang and J. Yin, Polymer 45, 5057 (2004). doi: 10.1016/j.polymer.2004.05.050
    [29]
    Q. Sun, J. T. Wang, L. M. Zhang, and M. P. Yang, Acta Phys. Chim. Sin. 26, 2481 (2010). doi: 10.3866/PKU.WHXB20100925
    [30]
    G. N. Lewis and D. Lipkin, J. Am. Chem. Soc. 64, 2801 (1942). doi: 10.1021/ja01264a025
    [31]
    R. Rahn, J. Schroeder, J. Troe, and K. H. Grellmann, J. Phys. Chem. 93, 7841 (1989). doi: 10.1021/j100360a023
    [32]
    T. Shida, Y. Nosaka, and T. Kato, J. Phys. Chem. 82, 695 (1978). doi: 10.1021/j100495a016
    [33]
    C. H. Evans, N. Prud'homme, M. King, and J. C. Scaiano, J. Photochem. Photobiol. A 121, 105 (1999). doi: 10.1016/S1010-6030(98)00455-9
    [34]
    R. Rusakowicz, G. W. Byers, and P. A. Leermakers, J. Am. Chem. Soc. 93, 3263 (1971). doi: 10.1021/ja00742a027
    [35]
    N. S. Allen (Ed. ), Photopolymerization and Photoimaging Science and Technology, Applied Science, London, New York: Elsevier, (1989).
    [36]
    J. C. Scaiano, J. Am. Chem. Soc. 102, 7747 (1980). doi: 10.1021/ja00546a018
    [37]
    L. Chen, Q. H. Zhou, X. Liu, X. G. Zhou, and S. L. Liu, Chin. J. Chem. Phys. 28, 4 (2015).
    [38]
    J. J. Cavaleri, K. Prater, and R. M. Bowman, Chem. Phys. Lett. 259, 495 (1996). doi: 10.1016/0009-2614(96)00782-8
    [39]
    H. Morita, S. Mori, and T. Yamaoka, Bull. Chem. Soc. Jpn. 61, 191 (1988). doi: 10.1246/bcsj.61.191
    [40]
    M. V. Encina, E. A. Lissi, E. Lemp, A. Zanocco, and J. C. Scaiano, J. Am. Chem. Soc. 105, 1856 (1983). doi: 10.1021/ja00345a030
    [41]
    A. Gilbert and J. Baggot, Essentials of Molecular Photochemistry, London: Blackwell Scientific Publications, (1991).
    [42]
    R. F. Bartholomew, R. S. Davidson, P. F. Lambeth, J. F. McKellar, and P. H. Turner, J. Chem. Soc. Perkin Trans. 2, 577 (1972).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (219) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return