Volume 33 Issue 1
Apr.  2020
Turn off MathJax
Article Contents
Masaaki Baba, Ayumi Kanaoka, Akiko Nishiyama, Masatoshi Misono, Takayoshi Ishimoto, Taro Udagawa. Large Amplitude Motion in 9-Methylanthracene: High-Resolution Spectroscopy and Ab Initio Theoretical Calculation[J]. Chinese Journal of Chemical Physics , 2020, 33(1): 8-12. doi: 10.1063/1674-0068/cjcp1910188
Citation: Masaaki Baba, Ayumi Kanaoka, Akiko Nishiyama, Masatoshi Misono, Takayoshi Ishimoto, Taro Udagawa. Large Amplitude Motion in 9-Methylanthracene: High-Resolution Spectroscopy and Ab Initio Theoretical Calculation[J]. Chinese Journal of Chemical Physics , 2020, 33(1): 8-12. doi: 10.1063/1674-0068/cjcp1910188

Large Amplitude Motion in 9-Methylanthracene: High-Resolution Spectroscopy and Ab Initio Theoretical Calculation

doi: 10.1063/1674-0068/cjcp1910188
More Information
  • Corresponding author: Masaaki Baba, E-mail: baba@kuchem.kyoto-u.ac.jp
  • Received Date: 2019-10-27
  • Accepted Date: 2019-12-13
  • Publish Date: 2020-02-27
  • CH$_3$ internal rotation is one of the typical large amplitude motions in polyatomic molecules, the spectral analysis and theoretical calculations of which, were developed by Li-Hong Xu and Jon Hougen. We observed a Doppler-free high-resolution and high-precision spectrum of 9-methylanthracene (9MA) by using the collimated supersonic jet and optical frequency comb techniques. The potential energy curve of CH$_3$ internal rotation is expressed by a six-fold symmetric sinusoidal function. It was previously shown that the barrier height ($V_6$) of 9MA-$d_{12}$ was considerably smaller than that of 9MA-$h_{12}$ [M. Baba, et al., J. Phys. Chem. A 113 , 2366 (2009)]. We performed ab initio theoretical calculations of the multi-component molecular orbital method. The barrier reduction by deuterium substitution was partly attributed to the difference between the wave functions of H and D atomic nuclei.

     

  • Part of the special topic on "The 3rd Asian Workshop on Molecular Spectroscopy"
  • loading
  • [1]
    L. -H. Xu and J. T. Hougen, J. Mol. Spectrosc. 173, 540 (1995). doi: 10.1006/jmsp.1995.1255
    [2]
    L. -H. Xu, R. M. Lees, and J. T. Hougen, J. Chem. Phys. 110, 3835 (1999). doi: 10.1063/1.478272
    [3]
    L. -H. Xu, J. T. Hougen, R. M. Lees, and M. A. Mekhtiev, J. Mol. Spectrosc. 214, 175 (2002). doi: 10.1006/jmsp.2002.8573
    [4]
    Y. -P. Lee, Y. -J. Wu, R. M. Lees, L. -H. Xu, and J. T. Hougen, Science 311, 365 (2006). doi: 10.1126/science.1121300
    [5]
    L. -H. Xu, J. T. Hougen, J. M. Fisher, and R. M. Lees, J. Mol. Spectrosc. 260, 88 (2010). doi: 10.1016/j.jms.2010.01.001
    [6]
    L. -H. Xu, J. T. Hougen, and R. M. Lees, J. Mol. Spectrosc. 293, 38 (2013).
    [7]
    L. -H. Xu, R. M. Lees, J. T. Hougen, J. M. Bowman, X. Huang, and S. Carter, J. Mol. Spectrosc. 299, 11 (2014). doi: 10.1016/j.jms.2014.02.007
    [8]
    S. P. Belov, G. Yu. Golubiatnikov, A. V. Lapinov, V. V. Ilyushin, E. A. Alekseev, A. A. Mescheryakov, J. T. Hougen, and L. -H. Xu, J. Chem. Phys. 145, 024307 (2016). doi: 10.1063/1.4954941
    [9]
    L. -H. Xu, E. M. Reid, B. Guislain, J. T. Hougen, E. A. Alekseev, and I. Krapivin, J. Mol. Spectrosc. 342, 116 (2017). doi: 10.1016/j.jms.2017.06.008
    [10]
    L. -H. Xu, J. T. Hougen, G. Yu. Golubiatnikov, S. P. Belov, A. V. Lapinov, E. A. Alekseev, I. Krapivin, L. Margulés, R. A. Motiyenko, and S. Bailleux, J. Mol. Spectrosc. 357, 11 (2019). doi: 10.1016/j.jms.2018.12.003
    [11]
    D. R. Borst and D. W. Pratt, J. Chem. Phys. 113, 3658 (2000). doi: 10.1063/1.1287392
    [12]
    M. Baba, K. Mori, M. Saito, Y. Kowaka, Y. Noma, S. Kasahara, T. Yamanaka, K. Okuyama, T. Ishimoto, and U. Nagashima, J. Phys. Chem. A 113, 2366 (2009). doi: 10.1021/jp808550r
    [13]
    M. Baba, I. Hanazaki, and U. Nagashima, J. Chem. Phys. 82, 3938 (1985). doi: 10.1063/1.448886
    [14]
    M. Baba, U. Nagashima, and I. Hanazaki, J. Chem. Phys. 83, 3514 (1985). doi: 10.1063/1.449156
    [15]
    J. D. Lewis, T. B. Malloy Jr., T. H. Chao, and J. Laane, J. Mol. Spectrosc. 12, 427 (1972).
    [16]
    J. D. Lewis and J. Laane, J. Mol. Spectrosc. 65, 147 (1977). doi: 10.1016/0022-2852(77)90367-8
    [17]
    J. T. Hougen, J. Mol. Spectrosc. 256, 170 (2009). doi: 10.1016/j.jms.2009.04.011
    [18]
    A Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk
    [19]
    M. Baba, M. Saitoh, K. Taguma, K. Shinohara, K. Yoshida, Y. Semba, S. Kasahara, N. Nakayama, H. Goto, T. Ishimoto, and U. Nagashima, J. Chem. Phys. 130, 134315 (2009). doi: 10.1063/1.3104811
    [20]
    T. Ishimoto, Y. Ishihara, H. Teramae, M. Baba, and U. Nagashima, J. Chem. Phys. 128, 184309 (2008). doi: 10.1063/1.2917149
    [21]
    T. Ishimoto, Y. Ishihara, H. Teramae, M. Baba, and U. Nagashima, J. Chem. Phys. 129, 214116 (2008). doi: 10.1063/1.3028540
    [22]
    T. Ishimoto, M. Baba, U. Nagashima, N. Nakayama, and M. Koyama, J. Comput. Chem. Jpn. 15, 199 (2016). doi: 10.2477/jccj.2016-0024
    [23]
    M. Tachikawa, K. Mori, H. Nakai, and K. Iguchi, Chem. Phys. Lett. 290, 437 (1998). doi: 10.1016/S0009-2614(98)00519-3
    [24]
    T. Udagawa, T. Tsuneda, and M. Tachikawa, Phys. Rev. 89, 052519 (2014). doi: 10.1103/PhysRevA.89.052519
    [25]
    T. Udagawa and M. Tachikawa, J. Chem. Phys. 125, 244105 (2006). doi: 10.1063/1.2403857
    [26]
    M. Nakagaki, E. Nishi, K. Sakota, H. Nakano, and H. Sekiya, Chem. Phys. 328, 190 (2006). doi: 10.1016/j.chemphys.2006.06.043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (381) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return