• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

First-Principles Thermodynamics Study of CO/OH Induced Disintegration of Precious Metal Nanoparticles on TiO2(110)

  • Abstract: Revealing the fundamental mechanisms governing reactant-induced disintegration of supported metal nanoparticles and their dependences on the metal component and reactant species is vital for improving the stability of supported metal nanocatalysts and single-atom catalysts. Here we use first-principles-based disintegration thermodynamics to study the CO- and OH- induced disintegration of Ag, Cu, Au, Ni, Pt, Rh, Ru, and Ir nanoparticles into metal-reactant complexes (M(CO)n, M(OH)n, n=1 and 2) on the pristine and bridge oxygen vacancy site of TiO2(110). It was found that CO has a stronger interaction with these considered transition metals compared to OH, resulting in lower formation energy and a larger promotion effect on the disintegration of nanoparticles (NPs). The corresponding reactant adsorption energy shows a linear dependence on the metal cohesive energy, and metals with higher cohesive energies tend to have higher atomic stability due to their stronger binding with reactant and support. Further disintegration free energy calculations of NPs into metal-reactant complexes indicate only CO-induced disintegration of Ni, Rh, Ru, and Ir nanoparticles is thermodynamically feasible. These results provide a deeper understanding of reactant-induced disintegration of metal nanoparticles into thermodynamically stable metal single-atom catalysts.

     

/

返回文章
返回