• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Research on Raman-scattering and Fabrication of Multilayer Thin Film with Different Structures and Components Based on Pt/Ti/Si3N4/SiO2/Si Substrate

Research on Raman-scattering and Fabrication of Multilayer Thin Film with Different Structures and Components Based on Pt/Ti/Si3N4/SiO2/Si Substrate

  • 摘要: 选用三水醋酸铅、乙酰基丙酮酸锆、四异丙氧基钛、乙酰丙酮作初始材料,用同样的方法分别制备了锆钛酸铅(PZT)和钛酸铅(PT)两种固体前驱物. 采用改良型的溶胶-凝胶工艺技术,分别在不同的Pt-Ti-Si3N4-SiO2-Si基底上,按照不同的组合方式,制备了三种多层薄膜:PZT、PT/PZT-PZT/PT、PT/PZT/-/PZT/PT. 较详细地讨论了薄膜制备的工艺技术,发现当凝胶通过烧结和干燥后变成固态物质时,薄膜内部存在着较大的残余应力,当薄膜在600 ºC下退火时其内部残余应力可以被减小. 通过拉曼

     

    Abstract: Using the same conditions and various starting materials, such as lead acetate trihydrate, tetrabulyl titanate, zirconium n-butoxide, and acetylacetone, two kinds of solid precursors, lead zirconate titanate (PZT, Zr/Ti=15/85) and lead titanate (PT), were fabricated. With three different combinations, namely, PZT, PT/PZT-PZT/PT, and PT/PZT/-/PZT/PT, three multilayer thin films were deposited on three Pt-Ti-Si3N4-SiO2-Si substrates by a modified solgel process. The fabrication process of the thin films is discussed in detail.We found that there is a large built-in stress in the thin film, which can be diminished by annealing at 600 ºC, when the gel is turned into solid material through drying and sintering.The Raman scattering spectra of the films with different compositions and structures were investigated. With the help of X-ray diffraction (XRD) analyzer and Raman scattering spectra analyzer, it was found that the thin films with the PT/PZT-PZT/PT structure have reasonable crystallinity and less residual stress. XRD testing shows that the diffraction pattern of the multilayer film results from the superimposition of the PZT and PT patterns.This leads to the conclusion that the PT/PZT-PZT/PT multilayer thin film has a promising future in pyroelectric infrared detectors with high performance.

     

/

返回文章
返回