• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

虚时路径积分的广义四阶拆分方法及其谐振子分析

Generalized Fourth-Order Decompositions of Imaginary Time Path Integral: Implications of the Harmonic Oscillator

  • 摘要: 虚时路径积分方法是计算实际体系量子热力学性质的有效工具. 本文重点分析讨论了基于二阶和四阶拆分的虚时路径积分的有效性,给出谐振子体系配分函数统一的解析形式,进而得到其热力学性质和主要误差的表达式. 通过去除谐振子配分函数的主要误差,广义对称四阶拆分中的自由参数得以固定,以此计算实际体系的热力学量可以达到期望的三阶精度.

     

    Abstract: The imaginary time path integral formalism offers a powerful numerical tool for simulating thermodynamic properties of realistic systems. We show that, when second-order and fourth-order decompositions are employed, they share a remarkable unified analytic form for the partition function of the harmonic oscillator. We are then able to obtain the expression of the thermodynamic property and the leading error terms as well. In order to obtain reasonably optimal values of the free parameters in the generalized symmetric fourth-order decomposition scheme, we eliminate the leading error terms to achieve the accuracy of desired order for the thermodynamic property of the harmonic system. Such a strategy leads to an efficient fourth-order decomposition that produces third-order accurate thermodynamic properties for general systems.

     

/

返回文章
返回