• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

基于极化力场的典型分子铁电体分子动力学模拟研究

Molecular Dynamics Simulation of Typical Molecular Ferroelectrics based on Polarized Crystal Charge Model

  • 摘要: 分子铁电体是一类具有较高应用前景的铁电材料,具有环境友好性、灵活性和低成本等优点. 本文通过基于极化晶体电荷的分子动力学方法模拟了一组典型的分子铁电材料. 根据模拟结果,阐明了它们的铁电翻转机理及其磁滞回线. 本课题组近期开发的包含量子电极化效应的极化晶体电荷模型,非常适用于研究分子铁电材料. 本文对典型的分子离子铁电体,二异丙基卤化铵(DIPAX,X=C (Cl),B (Br)和I (I))以及两种新开发的有机分子铁电体(亚水杨基苯胺以及(-)-樟脑酸)共五个体系进行了模拟. 研究结果表明基于极化晶体电荷的分子动力学具有高效性和可靠性,它不仅阐明了所研究的分子铁电体的铁电翻转机制,而且扩展了极化晶体电荷的分子动力学的应用范围. 总之,极化晶体电荷的分子动力学方法在利用计算机模拟分子铁电体的铁电特性和相关机制的研究中提供了一种有效的手段,也将促进对新型分子铁电体的进一步探索.

     

    Abstract: Molecular ferroelectrics are a promising class of ferroelectrics, with environmental friendliness, flexibility and low cost. In this work, a set of characteristic molecular ferroelectrics are simulated by molecular dynamics (MD) with polarized crystal charge (PCC). From the simulated results, their ferroelectric switching mechanisms are elucidated, with their ferroelectric hysteresis loops. The PCC charge model, recently developed by our group, containing the quantum electric polarization effect, is suitable in nature for studying molecular ferroelectrics. The simulated systems include the typical molecular ionic ferroelectrics, di-isopropyl-ammonium halide (DIPAX, X=C (Cl), B (Br), and I), as well as a pair of newly validated organic molecular ferroelectrics, salicylideneaniline and (-)-camphanic acid. In total, there are five systems under investigation. Results demonstrate that the PCC MD method is efficient and reliable. It not only elucidates the ferroelectric switching mechanism of the studied molecular ferroelectrics, but also extends the application range of the PCC MD. In conclusion, PCC MD provides an efficient protocol for extensive computer simulations of molecular ferroelectrics, with reliable ferroelectric properties and associated mechanisms, and would promote further exploration of novel molecular ferroelectrics.

     

/

返回文章
返回