• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

普适的基于能量的分块方法计算甲烷水合物簇的精确结合能和拉曼光谱

Generalized Energy-Based Fragmentation Approach for Accurate Binding Energies and Raman Spectra of Methane Hydrate Clusters

  • 摘要: 甲烷水合物在化学、能源和环境科学等领域中都具有重要作用. 本文采用普适的基于能量的分块(GEBF)方法计算了多种甲烷水合簇的结合能和拉曼光谱. 首先使用这些甲烷水合簇的在显相关耦合簇CCSD(T)(F12 ^* )水平下得到的GEBF结合能,评估了一系列密度泛函计算的结果. 计算结果表明B3PW91-D3和B97D泛函表现最佳,与GEBF-CCSD(T)(F12 ^* )基准相比的平均绝对误差分别仅为0.27和0.47 kcal/mol. 然后用GEBF-B3PW91-D3方法计算得到了单、双笼甲烷水合簇的结构和拉曼光谱,得到的甲烷C - H键伸缩拉曼振动峰与实验值的偏差小于3 cm ^-1 ,说明B3PW91-D3泛函可以很好地重现实验结果. 随着水笼尺寸的增加. 甲烷C - H键伸缩拉曼峰发生红移,该现象与实验中提出的“松笼-紧笼”模型吻合. 此外,甲烷分子邻近环境(水笼)的改变对拉曼光谱的影响很小,环境从单笼变为双笼导致C - H键伸缩拉曼振动峰的蓝移不超过3 cm ^-1 . 甲烷水合簇的理论拉曼光谱与实验拉曼光谱结合可以用来研究海底或星际冰体内部的甲烷水合物的结构. 结合B3PW91-D3或B97D泛函和机器学习模型,可以进一步应用分子动力学模拟研究甲烷水合物的成核/生长机制和相变过程.

     

    Abstract: Methane hydrates (MHs) play important roles in the fields of chemistry, energy, environmental sciences, etc. In this work, we employ the generalized energy-based fragmentation (GEBF) approach to compute the binding energies and Raman spectra of various MH clusters. For the GEBF binding energies of various MH clusters, we first evaluated the various functionals of density functional theory (DFT), and compared them with the results of explicitly correlated combined coupled-cluster singles and doubles with noniterative triples corrections CCSD(T)(F12 ^* ) method. Our results show that the two best functionals are B3PW91-D3 and B97D, with mean absolute errors of only 0.27 and 0.47 kcal/mol, respectively. Then we employed GEBF-B3PW91-D3 to obtain the structures and Raman spectra of MH clusters with mono- and double-cages. Our results show that the B3PW91-D3 functional can well reproduce the experimental C−H stretching Raman spectra of methane in MH crystals, with errors less than 3 cm ^-1 . As the size of the water cages increased, the C−H stretching Raman spectra exhibited a redshift, which is also in agreement with the experimental "loose cage - tight cage" model. In addition, the Raman spectra are only slightly affected by the neighboring environment (cages) of methane. The blueshifts of C−H stretching frequencies are no larger than 3 cm ^-1 for CH4 from monocages to doublecages. The Raman spectra of the MH clusters could be combined with the experimental Raman spectra to investigate the structures of methane hydrates in the ocean bottom or in the interior of interstellar icy bodies. Based on the B3PW91-D3 or B97D functional and machine learning models, molecular dynamics simulations could be applied to the nucleation and growth mechanisms, and the phase transitions of methane hydrates.

     

/

返回文章
返回