• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

水分子高激发态的绝热势能面与光解机制

Adiabatic Potential Energy Surfaces and Photodissociation Mechanisms for Highly Excited States of H2O

  • 摘要: 本文在从头算icMRCI+Q水平上,发展了水分子的基态和九个激发态 \; A 、 \; I 、 \; B 、 \; C 、 \; D 、 \; D ' 、 \; D '' 、 \; E ' 和 \; F 的全维绝热势能面. 势能面的拟合采用了高斯过程回归并结合置换不变多项式方法. 通过选择大的活动空间与添加额外弥散函数的基组来准确描述这些里德堡状态,计算得到的垂直激发能和平衡构型与先前的理论与实验值十分吻合. 相对于前三个被广泛研究的低能量电子态,对高激发态光解的理论与实验研究仍然十分有限. 本文研究了水在真空紫外光解过程中涉及到的高激发态的全部三个解离通道. 特别是基于新发展的势能面,首次清晰地阐明了 \; D - \; E ' 、 \; E ' - \; F 、 \; A - \; I 和 \; I - \; C 电子态之间的锥形交叉等信息,文中详细讨论了这些电子激发态的非绝热解离途径,为阐明这些高里德堡态的光解离机制提供了帮助.

     

    Abstract: Full-dimensional adiabatic potential energy surfaces of the electronic ground state \tilde X and nine excited states \tilde A , \tilde I , \tilde B , \tilde C , \tilde D , \tilde D' , \tilde D'' , \tilde E' and \tilde F of H _2 O molecule are developed at the level of internally contracted multireference configuration interaction with the Davidson correction. The potential energy surfaces are fitted by using Gaussian process regression combining permutation invariant polynomials. With a large selected active space and extra diffuse basis set to describe these Rydberg states, the calculated vertical excited energies and equilibrium geometries are in good agreement with the previous theoretical and experimental values. Compared with the well-investigated photodissociation of the first three low-lying states, both theoretical and experimental studies on higher states are still limited. In this work, we focus on all the three channels of the highly excited state, which are directly involved in the vacuum ultraviolet photodissociation of water. In particular, some conical intersections of \tilde D - \tilde E' , \tilde E' - \tilde F , \tilde A - \tilde I and \tilde I - \tilde C states are clearly illustrated for the first time based on the newly developed potential energy surfaces (PESs). The nonadiabatic dissociation pathways for these excited states are discussed in detail, which may shed light on the photodissociation mechanisms for these highly excited states.

     

/

返回文章
返回