引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 110次   下载 41  
分享到: 微信 更多
Exact generator and its high order expansions in the time-convolutionless generalized master equation: Applications to the spin-boson model and exictation energy transfer
Qiang Shi
Author NameAffiliationE-mail
Qiang Shi Institute of Chemistry, CAS qshi@iccas.ac.cn 
Abstract:
The time-convolutionless (TCL) quantum master equation provides a powerful tool to simulate reduced dynamics of a quantum system coupled to a bath. The key quantity in the TCL master equation is the so-called kernel or generator, which describes effects of the bath degrees of freedom. Since the exact TCL generators are usually hard to calculate analytically, most applications of the TCL generalized master equation have relied on approximate generators using second and fourth order perturbative expansions. By using the hierarchical equation of motion (HEOM) and extended HEOM methods, we present a new approach to calculate the exact TCL generator and its high order perturbative expansions. The new approach is applied to the spin-boson model with different sets of parameters, to investigate the convergence of the high order expansions of the TCL generator. We also discuss circumstances where the exact TCL generator becomes singular for the spin-boson model, and a model of excitation energy transfer in the Fenna-Matthews-Olson complex.
Key words:  time-convolutionless generalized master equation, spin-boson model, exact generator, high order expansion
FundProject:
Exact generator and its high order expansions in the time-convolutionless generalized master equation: Applications to the spin-boson model and exictation energy transfer
史强
摘要:
The time-convolutionless (TCL) quantum master equation provides a powerful tool to simulate reduced dynamics of a quantum system coupled to a bath. The key quantity in the TCL master equation is the so-called kernel or generator, which describes effects of the bath degrees of freedom. Since the exact TCL generators are usually hard to calculate analytically, most applications of the TCL generalized master equation have relied on approximate generators using second and fourth order perturbative expansions. By using the hierarchical equation of motion (HEOM) and extended HEOM methods, we present a new approach to calculate the exact TCL generator and its high order perturbative expansions. The new approach is applied to the spin-boson model with different sets of parameters, to investigate the convergence of the high order expansions of the TCL generator. We also discuss circumstances where the exact TCL generator becomes singular for the spin-boson model, and a model of excitation energy transfer in the Fenna-Matthews-Olson complex.
关键词:  time-convolutionless generalized master equation, spin-boson model, exact generator, high order expansion
DOI:
分类号: