引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 37次   下载 110  
分享到: 微信 更多
Long-lived single excitons, trions, and biexcitons in CdSe/CdTe type-II colloidal quantum wells
kwu@dicp.ac.cn
Author NameAffiliationE-mail
kwu@dicp.ac.cn State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China, 116023 kwu@dicp.ac.cn 
Abstract:
Light-harvesters with long-lived excited states are desired for efficient solar energy conversion systems. Many solar-to-fuel conversion reactions, such as H2 evolution and CO2 reduction, require multiple sequential electron transfer processes, which leads to a complicated situation that excited states involves not only excitons (electron-hole pairs) but also multi-excitons and charged excitons. While long-lived excitons can be obtained in various systems (e.g., semiconductor nanocrystals), multi-excitons and charged excitons are typically shorted-lived due to nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the third carrier on a few to hundreds of picoseconds timescale . In this work, we report a study of excitons, trions (an exciton plus an additional charge), and biexcitons in CdSe/CdTe colloidal quantum wells or nanoplatelets. The type-II band alignment effectively separates electrons and holes in space, leading to a single exciton lifetime of 340 ns which is ~2 order of magnitudes longer than that in plane CdSe nanoplatelets. More importantly, the electron-hole separation also dramatically slows down Auger decay, giving rise to a trion lifetime of 70 ns and a biexciton lifetime of 11 ns, among the longest values ever reported for colloidal nanocrystals. The long-lived exciton, trion, and biexciton states, combined with the intrinsically strong light-absorption capability of two-dimensional systems, enable the CdSe/CdTe type-II nanoplatelets as promising light harvesters for efficient solar-to-fuel conversion reactions.
Key words:  solar energy, excited state lifetime, exciton, trion, biexciton, type-II quantum wells, nanoplatelets, Auger recombination
FundProject:
Long-lived single excitons, trions, and biexcitons in CdSe/CdTe type-II colloidal quantum wells
kwu@dicp.ac.cn
摘要:
Light-harvesters with long-lived excited states are desired for efficient solar energy conversion systems. Many solar-to-fuel conversion reactions, such as H2 evolution and CO2 reduction, require multiple sequential electron transfer processes, which leads to a complicated situation that excited states involves not only excitons (electron-hole pairs) but also multi-excitons and charged excitons. While long-lived excitons can be obtained in various systems (e.g., semiconductor nanocrystals), multi-excitons and charged excitons are typically shorted-lived due to nonradiative Auger recombination pathways whereby the recombination energy of an exciton is quickly transferred to the third carrier on a few to hundreds of picoseconds timescale . In this work, we report a study of excitons, trions (an exciton plus an additional charge), and biexcitons in CdSe/CdTe colloidal quantum wells or nanoplatelets. The type-II band alignment effectively separates electrons and holes in space, leading to a single exciton lifetime of 340 ns which is ~2 order of magnitudes longer than that in plane CdSe nanoplatelets. More importantly, the electron-hole separation also dramatically slows down Auger decay, giving rise to a trion lifetime of 70 ns and a biexciton lifetime of 11 ns, among the longest values ever reported for colloidal nanocrystals. The long-lived exciton, trion, and biexciton states, combined with the intrinsically strong light-absorption capability of two-dimensional systems, enable the CdSe/CdTe type-II nanoplatelets as promising light harvesters for efficient solar-to-fuel conversion reactions.
关键词:  solar energy, excited state lifetime, exciton, trion, biexciton, type-II quantum wells, nanoplatelets, Auger recombination
DOI:
分类号: