引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 975次   下载 694 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Department of Physics, Shaoxing College of Arts and Sciences, Shaoxing 312000
Chen Zidong*,Chen Gang
Author NameAffiliationE-mail
Chen Zidong* Department of Physics, Shaoxing College of Arts and Sciences, Shaoxing 312000 sxczd@ascas.edu.cn  
Chen Gang Department of Physics, Shaoxing College of Arts and Sciences, Shaoxing 312000  
Abstract:
A simplified method, Laplace transformation, is used to discuss the radial Schrodinger equation with the weakest bound electron potential model (WBEPM). Through using such method, the second-order differential equation is reduced to a first-order differential equation and the exact bound state solutions including energy spectrum and normalized wave functions are obtained by making use of the integral. The results agree with those obtained by Zheng. It is most important that the two kinds of new recursion relations of radial wave functions are derived by the same method. These new recursion relations are the relations between the effective principal and angular-momentum quantum numbers, and are comprehensive in application to the calculations of transition probabilities in atomic and molecular physics.
Key words:  Weakest bound electron potential model theory, Schrodinger equation, Recursion relation, Laplace transformation
FundProject:
最弱受约束电子势模型的径向波函数的两类递推关系
陈子栋*,陈刚
摘要:
应用简单的方法--Laplace变换法来求最弱受约束电子势模型(WBEPM势)的径向Schrodinger方程.通过这种方法使得两阶微分方程变为一阶微分方程,这样可以直接运用积分得到WBEPM势束缚态能量方程和归一化的波函数,所得结果与文献一致.更重要的是用Laplace变换得到径向波函数的两类新的递推关系.这种递推关系是有效主量子数和角量子数之间关系,在计算原子和分子跃迁几率时有着广泛的应用.
关键词:  WBEPM势  Schrodinger方程  递推关系  Laplace变换
DOI:10.1088/1674-0068/18/6/983-986
分类号: