引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1347次   下载 849 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Theoretical Study on 1H and 13C-NMR of 2,4,6-trimethoxyphenol-1-O-D-glucopyranoside
Zhao Dongbao*1,2, Zhang Jinglai2, Li Mingjing2, Liu Xiuhua2, Wang Hanqing1
1.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;2.College of Chemistry and Chemical Engineering Henan University, Kaifeng 475001
Abstract:
The 1H and 13C-NMR of 2,4,6-trimethoxyphenol-1-O-D-glucopyranoside(Compound 1) isolated from Celastrus angulatus (Celastraceae) was calculated theoretically at the both levels HF/6-311+G(2d,p)//B3LYP/6-31G(d) and HF/6-311+G(2d,p)//B3LYP/6-31G(d,p) using the GIAO (gauge-independent atomic orbital) method. Statistical error analysis for theoretically predicted δH and δC values versus those experimentally observed for compound 1 was discussed. The results show that the theoretically predicted δH and δC values of β conformer of compound 1 are more close to the experimentally observed values than α conformer, and the β conformer of compound 1 is more stable than α conformer according to molecular energy theoretically calculated. So compound 1 is assigned to be 2,4,6-trimethoxyphenol-1-O-β-D-glucopyranoside, which is in good consistence with the conclusion deduced by the anomeric proton signal (δH=4.80, J=7.3 Hz) experimentally observed.
Key words:  2,4,6-trimethoxyphenol-1-O-D-glucopyranoside, 1H and 13C-NMR, Calculate theoretically
FundProject:
附件
2,4,6-三甲氧基苯-1-O-D葡萄糖苷的核磁共振谱的理论研究
赵东保*1,2, 张敬来2, 李明静2, 刘绣华2, 汪汉卿1
1.中国科学院兰州化学物理研究所,兰州,730000;2.河南大学化学化工学院,开封,475001
摘要:
应用规范不变原子轨道GIAO法,分别在HF/6-311+G(2d,p)//B3LYP/6-31G(d)和HF/6-311+G(2d,p)//B3LYP/6-31G(d, p)水平上,计算了从卫茅科南蛇藤属植物苦皮藤中分离鉴定出的2,4,6-三甲氧基苯-1-O-D葡萄糖苷(化合物1)的α和β分子构型的 1HNMR和 13CNMR的化学位移值,并对理论计算值与实验值的误差进行了统计分析,其中β分子构型的计算值与实验值较为接近,结合α和β分子构型的总能量计算值,预测化合物1分子应择型于β构型,即为2,4,6-三甲氧基苯-1-O-β-D葡萄糖苷,这与根据糖的端基质子化学位移和耦合常数实验值(δH=4.81, J=7.3 Hz)推断的结论相吻合,进一步说明理论计算的合理性.
关键词:  2,4,6-三甲氧基苯-1-O-D葡萄糖苷  核磁共振化学位移  理论计算
DOI:10.1088/1674-0068/18/5/745-749
分类号: