引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 990次   下载 6 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Quantum Chemistry Study on the Lubricant Properties for DPDS and DBDS Compounds
Li Xinfang,Wang Xueye*,Liu Wanqiang,Wen Xiaohong,Long Qingping, Tan Yuanqiang,Li Jianjun
Author NameAffiliationE-mail
Li Xinfang College of Chemistry, Xiangtan University, Xiangtan 411105  
Wang Xueye* College of Chemistry, Xiangtan University, Xiangtan 411105 wxueye@xtu.edu.cn 
Liu Wanqiang College of Chemistry, Xiangtan University, Xiangtan 411105  
Wen Xiaohong College of Chemistry, Xiangtan University, Xiangtan 411105  
Long Qingping College of Chemistry, Xiangtan University, Xiangtan 411105  
Tan Yuanqiang College of Chemistry, Xiangtan University, Xiangtan 411105  
Li Jianjun Jiangsu Entry-exit Inspection and Quarantine Bureau, Nanjing 210001  
Abstract:
The molecular geometries optimization and electronic structures of diphenyl disulfide (DPDS) and dibenzyl disulfide (DBDS) compounds were investigated by density functional theory (DFT) and ab initio method at the 6-31G basis set level. The active atoms and bonds of reaction were provided by frontier molecular orbital theory. The molecular orbital parameters of DPDS and DBDS compounds and iron atom cluster were calculated by using density functional theory. The interaction pattern between the organic disulfide compounds and iron atom cluster was discussed based on the approximate rule of orbital energy. Some parameters characterizing the action strength between the organic disulfide compounds and iron atom cluster, including the bonding strength, reactive strength and static action strength, were analyzed by using frontier electron density, super de-localizability, net atomic charge and the interaction energy of chemical adsorption as criteria. The results indicate that S-S chemical bond and C-S chemical bond of the compounds are inclined to be broken when DPDS and DBDS interact with the metal. The anti wear ability order of DPDS and DBDS compounds is DPDS>DBDS, and the extreme pressure ability order of DPDS and DBDS compounds is DBDS>DPDS, and the prediction results based on quantum chemistry calculations are in good accordance with the friction and wear test results.
Key words:  DPDS, DBDS, Density functional theory, ab initio, Molecular orbital index
FundProject:
二苯二硫和二苄二硫润滑性能的量子化学研究
李新芳,王学业*,刘万强,文小红,龙清平,谭援强,李建军
摘要:
用Gaussian03W程序在B3LYP/6-31G*和HF/6-31G*水平上对二苯二硫(DPDS)和二苄二硫(DBDS)的分子几何构型、电子结构、分子轨道指数及与铁原子簇的相互作用等进行了理论计算.用前线分子轨道理论分析了反应的活性原子和活性键,讨论了DPDS和DBDS与铁原子的作用方式,用前线电子密度,超离域性指数,原子净电荷及化合物与铁原子簇的化学吸附作用能等参数作为判据分析了DPDS和DBDS与铁原子间键合的强弱,反应性的大小.计算结果表明DPDS和DBDS与铁接触时,趋向于S-S键与C-S键断
关键词:  二苯二硫  二苄二硫  密度泛函理论  从头计算法  分子轨道指数
DOI:10.1088/1674-0068/18/4/527-532
分类号: