引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1150次   下载 1503 本文二维码信息
码上扫一扫!
分享到: 微信 更多
The Properties of Hydrogen Physisorbed in Multi Walled Carbon Nantubes
Zhao Li,Cheng Jinrong,Huang Decaia,Yuan Xinghong,Zhang Libo,Tang Ruihua
Author NameAffiliationE-mail
Zhao Li Department of Physics, Anhui University, Hefei 230039;Department of Modern Physics, University of Science and Technology of China, Hefei 230026  
Cheng Jinrong Department of Physics, Anhui University, Hefei 230039 cjr@ahu.edu.cn  
Huang Decaia Department of Physics, Anhui University, Hefei 230039  
Yuan Xinghong Department of Physics, Anhui University, Hefei 230039  
Zhang Libo Department of Physics, Anhui University, Hefei 230039  
Tang Ruihua Department of Physics, Anhui University, Hefei 230039  
Abstract:
The physisorption of hydrogen stored in armchair multi-walled carbon nanotubes (MWCNTs) is simulated by the grand canonical Monte Carlo (GCMC) method on the condition of 10 MPa at normalt emperature. Hydrogen-hydrogen and hydrogen-carbon interactions are both modeled with Lennard-Jones potential. The hydrogen storage in double-walled carbon-nanotubes (DWCNTs) has been investigated on the condition that the internal or external radius is changed while the other radius remains constant. The results show that hydrogen molecules are mostly absorbed near the tube walls, and the hydrogens to rage capacityisim proved effectively when the difference between the internal radius and the external radius increases from 0.34 to 0.61 or 0.88 nm. Its simple theoretic explanation also is given. Further more, the capacity of hydrogen physisorbed in there-walled carbon nanotubes (TWCNTs) is calculated when the wall-wall distance is 0.34, 0.61 and 0.88 nm respectively. Then its hydrogen storage capacity is compared with that of single-walled carbon nanotubes (SWCNTs) and DWCNTs, and it is discovered that the capacity of hydrogen physisorbed in MWCNTs decreases as the number of wall increases.
Key words:  Multi-walled carbon nanotube, Hydrogen storage, Physisorption, Grand canonical ensemble, Monte Carlo simulation
FundProject:
多壁碳纳米管储氢的物理吸附特性
赵力,程锦荣*,黄德财,袁兴红,张立波,唐瑞华
摘要:
采用巨正则蒙特卡罗方法,模拟常温、 10 MPa下氢在扶手椅型多壁壁碳纳米管中的物理吸附过程.氢分子之间、氢分子与碳原子之间的相互作用采用Lennard-Jones势能模型.研究了双壁碳纳米管外(内)径固定而内(外)径改变时的物理吸附储氢情况,发现氢分子主要储存在双壁碳纳米管的管壁附近,当双壁碳纳米管的内外管壁间距由0.34 nm增大到0.61或0.88 nm时可有效增加物理吸附储氢量,并给出了相应的理论解释.在此基础上,计算了管壁间距为0.34、 0.61和0.88 nm时的三壁碳纳米管的物理吸附储氢量,并与相同条件下单壁和双壁碳纳米管的物理吸附储氢量作了比较,发现多壁碳纳米管的物理吸附储氢量随碳管层数的增加而减小.
关键词:  多壁碳纳米管  储氢  物理吸附  巨正则系综  蒙特卡罗模拟
DOI:10.1088/1674-0068/17/5/572-576
分类号: