引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1014次   下载 963 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Integral Equation Method for the Determination of the Depletion Potential Between Two Colloidal Particles
Zhou Shiqi*,Zhang Xiaoqi,Xiang Xianwei,Xiang Hong
Author NameAffiliationE-mail
Zhou Shiqi* Research Institute of Modern Statistical MechanicsZhuzhou Institute of TechnologyZhuzhou 412008 chixiayzsq@163.net 
Zhang Xiaoqi Research Institute of Modern Statistical MechanicsZhuzhou Institute of TechnologyZhuzhou 412008  
Xiang Xianwei Research Institute of Modern Statistical MechanicsZhuzhou Institute of TechnologyZhuzhou 412008  
Xiang Hong Research Institute of Modern Statistical MechanicsZhuzhou Institute of TechnologyZhuzhou 412008  
Abstract:
Binary components Ornstein-Zernike integral equation with the concentration of large particle component being set to zero was employed to study the depletion potential behavior between two large neutral colloid particles (modeled as hard spheres)immersed in a sea of small neutral solvent particles. The prediction for the depletion potential behavior compared well with simulation data and experimental data available in the literature. It is found that the Hansen-Verlet one phase criterion,based on the effective one component system with the present depletion potential,for the freezing transition is completely not suitable for the real binary components system. It is disclosed that the unsuitability is due to the volume term of the solid phase and liquid phase which can not be treated selfconsistently in the Hansen-Verlet one phase criterion.
Key words:  Depletion potential,Colloids,Integral equation theory
FundProject:
用积分方程方法决定胶粒之间的空耗势
周世琦*,张晓琪,向贤伟,向红
摘要:
用硬球模中性胶体粒子,数值求解双组分Ornstein-Zernike 积分方程( 当大的中性胶体粒子的浓度为零时),用来决定悬浮在溶剂(用小的硬球模拟)中两个胶粒之间的空耗势. 所预言的空耗势与文献的模拟数据和实验数据能很好地符合. 研究发现,基于空耗势的有效一组分Hansen-Verlet一相相变标准完全不能预言双组分系统的液-固相变. 讨论了导致这种现象的原因:Hansen-Verlet一相相变标准不能自冾地处理有效一组分系统中固相与液相的体积能.
关键词:  空耗势  胶体  积分方程理论
DOI:10.1088/1674-0068/17/1/38-44
分类号: