Abstract: |
The reaction-diffusion-convective equations with general diffusion and flow rates for Selkovmodel are established. Non-Turing instability (NTI) and its parameters space for the system are studied. Compared with the results by Andresen , the condition for the occurrence of non-Turing instability is extended. The stationary spatial periodic structures still exist outside the oscillatory Hopf domain. Therefore, the parameters space where NTI exists in this case is bigger than those by Andresen. Meanwhile, the relations of the parameters space of NTI with those of Tu ring instability and differential flow-induced instability are comparatively studied. It is shown that dynamical mechanism is caused by differential flow-induced instability (DIFI) instability, and DIFI is the necessary condition for flow-distributed structure (FDS) to occur. |
Key words: Selkovmodel, Turing instability, Non-Turing instability, Reaction-diffusion-convective equation, Differential flow-induced instability |
FundProject: |
|
Selkov模型不同扩散和流速下非Turing不稳定化学反应机制 |
龚玉兵*1, 王宝英2, 徐强1
|
1.烟台师范学院,物理系,烟台,264025;2.烟台师范学院,图书馆,烟台,264025
|
摘要: |
建立了Selkov模型中间反应物具有不同扩散和不同流速条件下的反应-扩散-流动方程,理论分析了非Turing不稳定形成的条件,求得其参数区间,对Andresen的结论作了拓展.研究还发现,在振荡Hopf区域之外,静止波动(空间周期结构FDS)仍然可以存在.因而,此结构存在的参数空间大于Andresen的结果.同时,还将此种不稳定参数区间与Turing不稳定和差速流动引起不稳定(DIFI)的结果进行了比较,结果发现静态FDS值总是处于DIFI临界曲线相应的最小值之上,这表明动力学机制是由DIFI不稳定造成的 |
关键词: Selkov模型 Turing不稳定和非Turing不稳定 反应-扩散-流动方程 DIFI不稳定 |
DOI:10.1088/1674-0068/16/3/209-213 |
分类号: |