引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1160次   下载 1872 本文二维码信息
码上扫一扫!
分享到: 微信 更多
The Periodic Three-state Hopping Model for Molecular Motors
Feng Juan1,2, Zhuo Yizhong1,3,4, Liu Fuhu2
1.China Institute of Atomic Energy, Beijing 102413;2.The Physical Department of Shanxi Normal University, Linfen 041004;3.Theoretical Physical Department of China Science Institute, Beijing 100080;4.Nuclear Theory Center of Lanzhou Heavy Ion Accelerator State Laboratory, Lanzhou 730000
Abstract:
Motivated by recent applications to experiments on molecular motors, the directed motion of molecular motor based on a periodic one-dimensional three-states hopping model is studied. The model combines the biochemical cycle o nucleotide hydrolysis with the motor′s translation. An explicit solution is obtained for the probability distribution as function of the time for any initial distribution with all the transients included, and the drift velocity v, the diffusion constant D and the randomness parameter can also be obtained at any time from the probability distribution. Meanwhile the characteristic time for the motor to reach steady state has been calculated. Lastly, several possible applications arproposed: the pure asymmetric case, the random symmetric case and the random asymmetric case. In the long-time limit, the drift velocity v and the diffusion constant D are obtained in terms of microscopic transition rates that are parameters in the three-state stochastic model for the pure asymmetric case. By comparison with experiments (drift velocity and randomness parameter rversus [ATP]), it is shown that the model presented here can rather satisfactorily explain the available data. The theoretical model provides a conceptual framework for realistic studies of molecular motor.
Key words:  Molecular motor, Hopping model, Probability distribution transition rate
FundProject:
附件
分子马达的三态周期跳跃模型
冯娟*1,2, 卓益忠1,3,4, 刘福虎2
1.中国原子能科学研究院275信箱18分箱,北京,102413;2.山西师范大学物理系,临汾,041004;3.中国科学院理论物理研究所,北京,100080;4.兰州重离子加速器国家重点实验室原子核理论中心,兰州,730000
摘要:
研究了在一维三态周期跳跃模型下分子马达的定向运动.对于给定的任意初始分布,得出了与时间有关的几率分布的解析表达式,包括到达稳态之前的所有的瞬态过程,由此可获得马达在各个时刻的漂移速度v、扩散系数D以及描述马达随机性质的随机参数r(randomness parameter ).同时还计算了马达到达稳态所需要的特征时间.并把计算结果同实验进行了比较.
关键词:  分子马达  跳跃模型  几率分布  转换速率
DOI:10.1088/1674-0068/15/5/379-386
分类号: