引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 585次   下载 666 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Ceometries, Energetics and Spectroscopic Properties of Oxygen Clusters Oxy (x=2~6, y=-2~2)
Yi Jun,Chen Hongbo,Wei Guang,Lin Yinzhong,Liao Daiwei
Author NameAffiliation
Yi Jun Department of Chemistry, Department of Oceanography, State Key Lab ofPhysical Chemistry on Solid Surfaces, Institute ofPhysical Chemistry, Xiamen University, Xiamen 361005 
Chen Hongbo Department of Chemistry, Department of Oceanography, State Key Lab ofPhysical Chemistry on Solid Surfaces, Institute ofPhysical Chemistry, Xiamen University, Xiamen 361005 
Wei Guang Department of Chemistry, Department of Oceanography, State Key Lab ofPhysical Chemistry on Solid Surfaces, Institute ofPhysical Chemistry, Xiamen University, Xiamen 361005 
Lin Yinzhong Department of Chemistry, Department of Oceanography, State Key Lab ofPhysical Chemistry on Solid Surfaces, Institute ofPhysical Chemistry, Xiamen University, Xiamen 361005 
Liao Daiwei Department of Chemistry, Department of Oceanography, State Key Lab ofPhysical Chemistry on Solid Surfaces, Institute ofPhysical Chemistry, Xiamen University, Xiamen 361005 
Abstract:
The geometries, energetics and spectroscopic properties of oxygen clusters, Oxy(x=2~6, y=-2~2), were investigated at the B3LYP/6-311G (d, p) level. The CASSCF calculations were carried out for the ground and excited states of3O2and2O2+. The total energy is3O2(3Σg-)<2O2-(2Πgi)<1O2(1Δg)<1O2-2(1Σg+)<2O2+(2Πg)<1O2+2(1Σg+). The relative energy of the active doublet anion of oxygen molecule,2O2-(2Πgi), is only 28 kJ/mol higher than the triplet neutral oxygen molecule,3O2(3Σg-). The calculated O-O vibrational frequencies all are in good agreement with the experimental values. They are 1577 (1580), 1139 (1090), 1563 (1484), 627 (615~545) and 1993 (1905) cm-1, where the O-O vibrational frequency values in parentheses are experimental values, for3O2(3Σg-),2O2-(2Πgi),1O2(1Δg),1O2-2(1Σg+) and2O2+(2Πg), respectively. Moreover, the O-O vibrational frequency of1O2+2(1Σg+) was computed as 2368 cm-1which has not been reported before at both experimental and theoretical levels. Both bent and linear geometries of O3were studied. The bent-types of O3are more favorable than the linear-type in energy. Three types of structure for oxygen trimers are calculated at the B3LYP/6-311G (d, p) level. They are the structure-I with an obtuse angle of O-O-O,the structure-II with an acute angle of O-O-O, and the structure-III of linear type. For a bent-type structure of O3species (structure-I), the total enegy is2O3-(2B1)<1O3(1A1)<3O3(3B2)<1O3-2(1A1)<2O3+(2A1). The optimization of geometry at B3LYP/6-311G (d, p) level indicated that the species of2O3-(2B1) with 1.3573 of O-O bond length and 115.6584o of O-O-O bond anger is the ground state of O3. The total energy of O4species and their ions is2O4-(Cs,2A′, bend-type)<2O4-(C2v,2A2,face-centered triangle-type)<2O4-(D∞h,2Σg, linear-type)<1O4(Cs,1A′, bend-type)<1O4(D∞h,1Σg, linear-type)<1O4(D4h,1A1g, square-type)<1O4(C2v,1A1, face-centered triangle-type)<2O4-(D4h,1A1g, square-type)<2O4+(D∞h,2Σg, linear-type)<2O4+(Cs,1A′, bend-type). The species with the lowest relative energy is an anion,2O4-(Cs,2A′, bendtype), with chair form geometry and characteristic vibronic frequencies of 1179 and 1349 cm-1. The relative energy of1O5(C2v,1A1) with coplanar-triangle-bicone geometry is the lowest among the O5species and their ions, which may be a resonance structure with1O5(C2v,1A1) of A type. Their characteristic vibronic frequency is 1302 cm-1. The relative energy of the O6species and their ions with hexagon geometry is lower than one with linear geometry. Their infrared vi-bronic intensity may be weak and unobservable but the Raman vibronic intensity may be strong and observable based on their symmetry.
Key words:  Oxygen cluster, O2, O3, O4, O5, O6, ab initio, Spectroscopic properties, Geome-try, Energetics
FundProject:国家自然科学基金资助项目(29773037)
氧原子簇Oxy (x=2~6, y=-2~2)的结构、能学与光谱性质
易军,陈鸿博,魏光,林银钟,廖代伟
摘要:
在B3LYP/6-311G(d,p)水平上,对氧原子簇Oxy(x=2~6,y=-2~2)的结构、能学与光谱性质进行了量子化学从头计算,对3O2和2O2+的基态和激发态进行了CASSCF计算.结果表明,氧分子及其离子的体系总能量大小为<O2+(2Пg)<1O2+2(1∑g+).活性的二重态氧分子负离子2O2-(2Пgi)在相对能量上只比三重态的中性氧分子3O2(3Σg-)高28kJ/mol.对于弯曲型(Structure-I)的臭氧分子(O3)及其离子,其体系总能量相对次序为2O3-(2B1)<1O3(1A1)<3O3(3B2)<1O3-2(1A1)<2O3+(2A1).氧四聚体(O4)及其离子的体系总能量相对大小为2O4-(C8弯曲型,2A′)<2O4-(C2v面心三角型,2A2)<2O4-(D∞h直线型,2∑g)<1O4(C8弯曲型,1A′)<1O4(D∞h直线型,1∑g)<1O4(D4h正方型,1A1g)<1O4(C2v面心三角型,1A1)<2O4-(D4h正方型,1A1g)<2O4+(D∞h直线型,2∑g)<2O4+(C8弯曲型,1A′).相对能量最低的氧四聚体物种是呈椅形的带一个负电荷的负离子2O4-(C8弯曲型,2A′),其特征振动频率应出现在1179和1349cm-1.共面三角双锥型的1O5(C2v,1A1)相对能量最低,其与A字型(C2v,1A1)可能是共振构型,特征振动频率位于1302cm-1.氧六聚体(O6)的六边型构型的相对能量较低,其振动频率的红外强度很弱,但从其对称性看,应具有较强的拉曼强度.以B3LYP/6-311G(d,p)方法计算、并经0.9614因子校正的氧分子及其离子的O-O振动频率与实验值相当吻合.
关键词:  氧簇  O2  O3  O4  O5  O6  ab initio  光谱性质  结构  能学
DOI:10.1088/1674-0068/14/1/65-74
分类号: