引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2187次   下载 1465 本文二维码信息
码上扫一扫!
分享到: 微信 更多
New Hexagonal-rhombic Trilayer Ice Structure Confined between Hydrophobic Plates (cited: 1)
Min Jia,Wen-hui Zhao,Lan-feng Yuan*
Author NameAffiliationE-mail
Min Jia Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China  
Wen-hui Zhao Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China  
Lan-feng Yuan* Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China yuanlf@ustc.edu.cn 
Abstract:
We perform molecular dynamics simulations for water confined between two smooth hy-drophobic walls and observe two crystalline structures with one being first reported. Both of these structures obey the ice rule. The novel ice phase is a flat hexagonal-rhombic tri-layer ice, obtained under 1 GPa load at wall separation of 1.0 nm. In this structure, the water molecules in the two layers next to one of the walls (outer layers) and in the middle layer form hexagonal rings and rhombic rings, respectively. For a molecule in the outer layers, three of its four hydrogen bonds are in the same layer, and the other one hydrogen bond connects to the middle layer. For a molecule in the middle layer, only two of its four hydrogen-bonds are located in the same layer, and the other two connect to two different outer layers. Despite their different motifs, the area densities of the three layers are almost equal. The other structure is a flat hexagonal bilayer ice produced at wall separation of 0.8 nm under lateral pressure of 100 MPa, analogous to a system demonstrated by Koga et al. [Phys. Rev. Lett. 79, 5262 (1997)]. Both first-order and continuous phase transitions take place in these simulations.
Key words:  Confined water, Molecular dynamics, Hexagonal-rhombic trilayer ice, Hexagonal-rhombic trilayer ice
FundProject:
限制在疏水板中的新的六边形-四边形三层冰结构 (cited: 1)
贾敏,赵文辉,袁岚峰*
摘要:
对限制在两个光滑的疏水板间的水进行了分子动力学模拟,观察到了两种晶体结构,都满足冰规则. 在1 GPa的压强和1.0 nm的板间距下获得的新的冰相是平坦的六边形-四边形三层冰. 在此结构中,靠近板的两层(外层)中的水分子形成六边形环,中间层的水分子形成四边形环. 对于外层的水分子,其四个氢键中的三个在同一层中,另一个氢键与中间层连接. 对于中间层的水分子,四个氢键中的两个在同一层中,而另外两个氢键与两个不同的外层相连. 虽然三层的形状不同,但其面密度却接近相等. 另一种结构是在0.8 nm的板间距和100
关键词:  受限水,分子动力学,六边形-四边形三层冰,六边形双层冰
DOI:10.1063/1674-0068/27/01/15-19
分类号: