引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1363次   下载 1266 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Adsorption Reaction Dynamics of Systems Lysozyme and Nanodiamond/Nanosilica at pH=7-13
Victor Wei-Keh Chao(Wu)*
Author NameAffiliationE-mail
Victor Wei-Keh Chao(Wu)* Department of Chemical and Materials Engineering, National Kaohsiung University of Applied Sci-ences, 80782 Kaohsiung, Taiwan, China Victor Basic Research Laboratory e.V. Gadderbaumer-Str.22, D-33602 Bielefeld, Germany victorbres3tw@yahoo.com.tw 
Abstract:
Adsorption reactions between surfaces of nanodiamond and nanosilica with diameter of 100 nm prepared as suspension solutions of 0.25 μg/μL and lysozyme molecule with different concentrations of 7 mmol/L PPBS at pH=7, 9, 11, and 13 have been investigated by fluores-cence spectroscopy. Adsorption reaction constants and coverages of lysozyme with different concentrations of 0-1000 nmol/L under the influences of different pH values have been ob-tained. Helicities and conformations of the adsorbed lysozyme molecules, free spaces of every adsorbed lysozyme molecule on the surfaces of nanoparticles at different concentrations and pH values have been deduced and discussed. The highest adsorption capabilities for both sys-tems and conformational efficiency of the adsorbed lysozyme molecule at pH=13 have been obtained. Lysozyme molecules can be prepared, adsorbed and carried with optimal activity and helicity, with 2 and 10 mg/m2 on unit nanosurface, 130 and 150 mg/g with respect to the weight of nanoparticle, within the linear regions of the coverages at around 150-250 nmol/L and four pH values for nanodiamond and nanosilica, respectively. They can be prepared in the tightest packed form, with 20 and 55 mg/m2, 810-1680 and 580-1100 mg/g at threshold concentrations and four pH values for nanodiamond and nanosilica, respectively.
Key words:  Protein adsorption, Interfacial reaction dynamics, Fluorescence spectroscopy, Single molecular spectroscopy, Biochip, Proteomics
FundProject:
溶菌酶-蛋白质与奈米钻石/奈米硅土之吸附反应动力学
赵(吴)为克
摘要:
利用传统荧光光谱法探讨了在pH=7、9、11、13下, 各为100 nm直径的纳米钻石及纳米硅土(配成0.25 μg/μL悬浮液)表面上与用7.0 mmol/L PPBS配制成不同浓度溶菌酶-蛋白质之吸附反应.获得了溶菌酶在0~1000 mmol/L不同浓度和不同pH值下的吸附反应常数及表面覆盖度.估算得到并讨论不同浓度和不同pH值下附着在纳米颗粒表面上溶菌酶分子的螺旋曲度及构型、每一溶菌酶分子所拥有之表面积大小.两吸附反应系统中,最高的吸附量与最佳的分子构型是在pH=13的环境下.又得到了溶菌酶在约150~250 nmol/L的线性覆盖曲区中及4个pH值范围中,可保持最佳活性及构型情況下,每平米纳米钻石及纳米硅土表面积可负载2和10 mg,每克纳米钻石及纳米硅土表面可承载溶菌酶130与150 mg.在临界浓度下及4个pH值范围中,可配制成最紧密、最大承载的溶菌酶量,每平米纳米钻石及纳米硅土表面积可负载20和55 mg,每克纳米钻石及纳米硅土表面可承載810~1680及580~1100 mg的溶菌酶.
关键词:  蛋白质吸附,界面反应动力学,荧光光谱学,单分子光谱学,生物芯片,蛋白质体学
DOI:10.1063/1674-0068/26/03/295-302
分类号: