引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1687次   下载 1290 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Time-dependent Diffusion Coefficient and Conventional Diffusion Constant of Nanoparticles in Polymer Melts by Mode-coupling Theory (cited: 2)
Xin-yu Lai,Nan-rong Zhao*
Author NameAffiliationE-mail
Xin-yu Lai College of Chemistry, Sichuan University, Chengdu 610064, China  
Nan-rong Zhao* College of Chemistry, Sichuan University, Chengdu 610064, China zhaonanr@scu.edu.cn 
Abstract:
Time-dependent diffusion coefficient and conventional diffusion constant are calculated and analyzed to study diffusion of nanoparticles in polymer melts. A generalized Langevin equa-tion is adopted to describe the diffusion dynamics. Mode-coupling theory is employed to calculate the memory kernel of friction. For simplicity, only microscopic terms arising from binary collision and coupling to the solvent density fluctuation are included in the formalism. The equilibrium structural information functions of the polymer nanocomposites required by mode-coupling theory are calculated on the basis of polymer reference interaction site model with Percus-Yevick closure. The effect of nanoparticle size and that of the polymer size are clarified explicitly. The structural functions, the friction kernel, as well as the diffusion coefficient show a rich variety with varying nanoparticle radius and polymer chain length. We find that for small nanoparticles or short chain polymers, the characteristic short time non-Markov diffusion dynamics becomes more prominent, and the diffusion coefficient takes longer time to approach asymptotically the conventional diffusion constant. This constant due to the microscopic contributions will decrease with the increase of nanoparticle size, while increase with polymer size. Furthermore, our result of diffusion constant from mode-coupling theory is compared with the value predicted from the Stokes-Einstein relation. It shows that the microscopic contributions to the diffusion constant are dominant for small nanoparticles or long chain polymers. Inversely, when nanonparticle is big, or polymer chain is short, the hydrodynamic contribution might play a significant role.
Key words:  Time-dependent diffusion coefficient, Conventional diffusion coefficient, Poly-mer melts, Mode-coupling theory, Polymer reference interaction site model
FundProject:
模耦合理论计算纳米粒子在聚合物熔体中的含时扩散系数与常规扩散常数 (cited: 2)
赖鑫昱,赵南蓉*
摘要:
分析和计算了纳米粒子在聚合物熔体中的含时扩散系数与常规扩散常数. 采用广义朗之万方程描述扩散动力学,并通过模耦合理论计算摩擦记忆内核.为简单起见,只考虑了来自两体碰撞和溶剂密度涨落耦合作用两类微观因素对摩擦记忆内核的贡献. 采用聚合物参考作用点模型以及Percus-Yevick闭合条件计算了聚合物-纳米粒子复合溶液的平衡态结构信息函数;详尽分析了纳米粒子的尺寸与聚合物链的尺寸对扩散动力学的影响. 揭示了结构函数、摩擦记忆内核以及扩散系数等随着纳米粒子半径和聚合物链长的变化关系. 结果表明,对于小尺寸的纳米粒子或者短链的聚合物,短时间的非马尔可夫扩散 动力学特征比较显著,含时扩散系数需要更长的时间弛豫到常规扩散常数. 微观因素对扩散常数的贡献随着纳米粒子尺寸的增加而减小,却随着聚合物链长的增加而增大. 此外,模耦合理论得到的扩散常数与Stokes-Einstein关系的预测值进行比较,发现对于小尺寸的纳米粒子或者长链的聚合物,微观因素对扩散常数的的贡献占主导地位. 相反,当纳米粒子较大或者聚合物链长较短时,流体力学的贡献会发挥重要作用.
关键词:  含时扩散系数,常规扩散常数,聚合物熔体,模耦合理论,聚合物参考作用点模型
DOI:10.1063/1674-0068/26/02/163-171
分类号: