引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1993次   下载 1612 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Coarse-grained Simulations of Chemical Oscillation in Lattice Brusselator System
Ting Rao1, Zhen Zhang1, Zhong-huai Hou*1,2, Hou-wen Xin1
1.Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China;2.Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
Abstract:
The oscillation behavior of a two-dimension lattice-gas Brusselator model was investigated. We have adopted a coarse-grained kinetic Monte Carlo (CG-KMC) procedure, where m£m microscopic lattice sites are grouped together to form a CG cell, upon which CG processes take place with well-defined CG rates. Such a CG approach almost fails if the CG rates are obtained by a simple local mean field (s-LMF) approximation, due to the ignorance of correlation among adjcent cells resulting from the trimolecular reaction in this nonlinear system. By proper incorporating such boundary effects, thus introduce the so-called b-LMF CG approach. Extensive numerical simulations demonstrate that the b-LMF method can reproduce the oscillation behavior of the system quite well, given that the diffusion constant is not too small. In addition, the deviation from the KMC results reaches a nearly zero minimum level at an intermediate cell size, which lies in between the effective diffusion length and the minimal size required to sustain a well-defined temporal oscillation.
Key words:  Chemical oscillation, Coarse-grained, Kinetic Monte Carlo
FundProject:
网格上布鲁塞尔体系化学振荡的粗粒化模拟
饶汀1, 张珍1, 侯中怀*1,2, 辛厚文1
1.中国科学技术大学化学物理系,合肥230026;2.中国科学技术大学合肥微尺度科学国家实验室,合肥230026
摘要:
将一种有效的粗粒化的动力学蒙特卡罗(KMC)方法用于加速模拟二维格气布鲁塞尔体系中的振荡行为.这种方法是将微观网格合并得到粗粒化的网格,并在该粗粒化网格上按粗粒化的反应速率执行KMC,即粗粒化的KMC.数值结果表明,由于非线性三分子反应导致的相邻元胞之间的关联是不能忽略的.通过正确的考虑这一边界效应,引入了所谓的b-LMF方法.大量的数据表明,只要体系的扩散系数不是很小,b-LMF方法能够很好的重现体系的振荡行为.另外,发现该方法所得的结果与KMC的偏离在合适的粗粒化尺度下存在一个接近于0的极小值,这一粗
关键词:  化学振荡,粗粒化,动力学蒙特卡罗
DOI:10.1088/1674-0068/24/04/425-433
分类号: