引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2034次   下载 1295 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Gaussian Weighted Trajectory Method. IV. No Rainbow Effect in Practice
L. Bonnet *
Institut des Sciences Moléulaires, Université Bordeaux 1,351 Cours de la Libéation,33405 Talence Cedex, France
Abstract:
The Gaussian weighted trajectory method (GWTM) is a practical implementation of classical S matrix theory (CSMT) in the random phase approximation, CSMT being the first and simplest semi-classical approach of molecular collisions, developped in the early seventies. Though very close in spirit to the purely classical description, GWTM accounts to some extent for the quantization of the different degrees-of-freedom involved in the processes.While CSMT may give diverging final state distributions, in relation to the rainbow effect of elastic scattering theory, GWTM has never led to such a mathematical catastrophe. The goal of the present note is to explain this finding.
Key words:  Gaussian weighted trajectory method, Classical S matrix theory, Rainbow effect
FundProject:
Gaussian Weighted Trajectory Method. IV. No Rainbow Effect in Practice
L. Bonnet *
波尔多大学分子科学研究所,波尔多33405
摘要:
高斯加权轨迹法(GWMT)是无规随机相态近似下的经典S矩阵理论(CSMT)的实际应用. CSMT曾经是1970年代初期发展起来的第一个和最简单的半经典分子碰撞理论. 虽然GWMT非常接近于纯粹的经典描述,但GWMT在一定程度上包含了对被研究的碰撞过程中不同自由度的量子化. 尽管CSMT会得出发散的末态分布,这与弹性散射理论中的的彩虹效应有关,但GWTM却从来不会导致这种数学灾难. 本文为这一现象提供了解释.
关键词:  高斯加权轨迹法,经典S矩阵理论,彩虹效应
DOI:10.1088/1674-0068/22/02/210-214
分类号: