引用本文:
【打印本页】   【HTML】   【下载PDF全文】   View/Add Comment  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1521次   下载 1154 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Defect Characterization of 6H-SiC Studied by Slow Positron Beam
Hai-yun Wang*,Hui-min Weng,Xian-yi Zhou
Author NameAffiliationE-mail
Hai-yun Wang* Department of Applied Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China wanghy7810@yahoo.com.cn, wanghaiyun@njupt.edu.cn 
Hui-min Weng Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China  
Xian-yi Zhou Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China  
Abstract:
The defect formation and annealing behavior in as-grown and electron-irradiated 6H-SiC wafers were investi-gated by variable-energy slow positron beam. For the n-type as-grown samples, it was found that annealing decreased the defect concentration due to recombination with interstitial, and when it was annealed at 1400 ±C for 30 min in vacuum, a 20 nm thick Si layer was found on the top of SiC substrate, which is a direct proof of the Si atom diffusing to the surface when annealed at the high temperature stages. During the high temperature annealing stage, we found an obvious surface effect occurred that induced the higher S parameter close to the surface. This may be caused by the diffusion of the Si atoms to the surface during annealing. After 10 MeV electron irradiation of the n-type 6H-SiC, the positron effective diffusion length decreased from 86.2 nm to 39.1 nm. This shows that there are some defects created in n-type 6H-SiC. But in the p-type 6H-SiC irradiated by 10 MeV electrons, the change is very small. This may be because of the opposite charge of the vacancy defects. The same annealing behavior as that of as-grown 6H-SiC samples was also observed for the 1.8 MeV electron-irradiated 6H-SiC samples except that after being annealed at 300 ±C, its defect concentration increased. This may be explained as the generation of carbon vacancies, due to either the recombination between divacancies and silicon interstitial, or the charge of the charge states.
Key words:  Positron annihilation, Defect, Semiconductor
FundProject:高校基金
Defect Characterization of 6H-SiC Studied by Slow Positron Beam
王海云*,翁惠民,周先意
摘要:
利用单能慢正电子束流,对原生的和经过电子辐照的6H-SiC内的缺陷形成及其退火行为进行研究.发现在n型6H-SiC中,经过退火后缺陷浓度降低.这主要是因为在退火过程中缺陷和间隙子的相互作用所引起.n型6H-Si经过1400 oC、30 min真空退火后,在SiC表面形成一个大约20 nm的Si层,这是在高温退火过程中Si原子向表面逸出的有力证明.在高温退火中,在样品的近表面区域有一个明显的表面效应,既在这些区域的S参数整体较大,这种现象与高温退火中Si不断向表面逸出有关.经过10 MeV的电子辐照,在n型6H-SiC中,正电子有效扩散长度从86.2 nm减少至39.1 nm,说明在样品中由于电子辐照产生大量缺陷.但是对p型6H-SiC,经过10 MeV电子辐照后有效扩散长度变化不大,这与其中缺陷的正电性有关.同时还对n型6H-SiC进行了1.8 MeV电子辐照后的300 oC退火实验,发现退火后缺陷浓度不减反增,这主要是因为在退火过程中,一些双空位缺陷和Si间隙子互相作用从而产生了VC缺陷的缘故.
关键词:  正电子湮没,缺陷,半导体
DOI:10.1088/1674-0068/21/04/333-338
分类号: