Selective Oxidation of Aldehyde over Hydroxymethyl Group Catalyzed by Gold Nanoparticles in Aqueous Phase

Han-bao Chonga,b, Gui-qi Gaob, Guang Lia*

a. School of Physics and Material Science, Anhui University, Hefei 230601, China
b. Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

(Dated: Received on May 20, 2019; Accepted on August 2, 2019)

A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into carboxylic acid while alcoholic hydroxyl group stays intact in selective oxidation of 4-(hydroxymethyl)benzaldehyde. The heterogeneous catalysis system is composed of soluble catalysts and insoluble substrate. The gold catalyst is prepared, preserved and applied for catalytic oxidation all in water. After reaction conditions are optimized, \(\text{H}_2\text{O}_2 \) is found to be the best oxidizing agent with complete conversion. Besides, the gold catalyst displays good versatility for aldehyde derivatives. After reaction completes, organic components are extracted by organic solvent and gold NPs in water are separated and recycled.

Key words: Au nanoparticle, Water-solubility, Selective oxidation, Starch

I. INTRODUCTION

Having been used as coinage, jewelry and arts for thousands of years, gold was considered inert in organic synthesis until it was discovered efficient for CO oxidation and chlorination of ethylene [1–4]. Afterwards, gold nanoparticles witnessed an increasing popularity as catalysts and they have been identified as the most active catalyst in a variety of reactions [5–8]. Usually the gold nanoparticles are anchored on metal oxide [9–13], carbon [14–16], graphene [17, 18], chitosan [19, 20], polymer [21–24], and silica [25–27], etc., to serve as heterogeneous catalysts. The insolubility of heterogeneous catalysts assists isolation and recovery of catalysts from the slurry, which makes them more popular [28, 29]. Utilization of these catalysts in aqueous phase leads to highly efficient and environmentally benign catalytic systems [30–33]. Usually the supported catalysts are heterogeneous with substrates that are soluble in organic solvents. In this work, we reverse the logic to prepare soluble catalyst while the substrate and product are dispersed in media.

Oxidation of aldehydes to corresponding carboxylic acids is of great significance for industrial manufacturing due to its great potential in organic synthesis [34]. Wang group developed a catalyst-free aerobic oxidation of aldehydes method in water, but with low aldehyde concentration [35]. Both aldehyde and alcohol groups can be oxidized into carboxylic acid, while some alcohol groups can be first oxidized into aldehyde and then to carboxylic acid. As a result, controllable oxidation of alcohol and aldehyde is a technical issue of synthesis. Herein, we develop a strategy to prepare an efficient catalytic system to selectively oxidize 4-(hydroxymethyl)benzaldehyde in aqueous phase by \(\text{H}_2\text{O}_2 \). The gold NPs are generated in water under oxygen atmosphere at 363 K, no reducing agent like NaBH\textsubscript{4} or urea is used except the use of naturally abundant starch as both capping agent and reducing reagent. The oxidation process occurs in water as \(\text{H}_2\text{O}_2 \) is also stored in aqueous, and the product is isolated by extraction with organic solvents as well as the residual aldehydes after reaction completes. In the past decades, the growing awareness of the environment has evoked a demand for efficient oxidation process with environmentally friendly oxidants. Hence, the quest for more sustainable and selective oxidation systems is a current hot research field [36].

In this work, water, \(\text{H}_2\text{O}_2 \) and starch are cheap and facile in industry. No base, buffer or co-catalyst are required, which all consent with the idea of “sustainable development”. Starch is a qualified reducing agent and protecting ligand [37] which is innoxious to operator. The facile synthesis and catalytic reaction protocol are presented in FIG. 1. Briefly, gold salt is mixed with starch in water under oxygen atmosphere at 363 K for 4 h. The colloid is preserved in fridge prior to use. After catalytic reaction completes, dichloromethane is used to extract organic components for several times while the aqueous layer containing catalyst is separated. The gold NPs are characterized by transmission electron microscope (TEM), infrared radiation (IR), and X-ray

*Author to whom correspondence should be addressed.
E-mail: liguang1971@ahu.edu.cn

DOI:10.1063/1674-0068/cjcp1905101 ©2019 Chinese Physical Society
photoelectron spectroscopy (XPS). And Au loading on supported NPs and in water is determined by ICP AES as 16 mg/g and 160 mg/L, respectively.

II. METHODS

A. Experimental methods

All the chemicals and reagents were purchased from Aladdin corporation. All the organic products were analyzed by Bruker AM 400 MHz NMR to confirm the structure. The UV tests of NPs were operated with the help from Hewlett-Packard (HP) 8453 diode array spectrophotometer. TEM images were acquired by JEM 2100. TLC plates (Merck Silica Gel 60 F254) were used for analytical thin layer chromatography. Merck Kieselgel 200 was used for preparative column chromatography. The Au loading was determined by ICP AES (iCAP 7400 Duo) from Thermo Fisher. XPS data are collected by ESCALAB 250Xi from Thermo Fisher.

B. Sample preparation

1. Synthesis of gold NPs

100 μL HAuCl₄·4H₂O (0.05 mmol) solution was injected into 100 mL water containing 1 g starch under stirring. The mixture was heated to 363 K for 4 h under oxygen atmosphere. After reaction completed, the colloidal was cooled down and then preserved in fridge at 277 K prior to use.

2. Typical procedure for the catalytic reaction

0.1 g 4-(hydroxymethyl)benzaldehyde (0.735 mmol) was added into 5 mL catalyst storage solution (Au loading 0.004 mmol). Then the slurry was heated to 363 K for 6 h before adding 1215 μL H₂O₂ (30% V/V). After cooled down, the organic layer was extracted by dichloromethane (3 mL for 6 times). Finally, the purification process was carried out by column chromatography.

After reaction completed, the organic components were washed with 3 mL dichloromethane for 5 times, and the water phase was collected after skimming. The water containing gold NPs could be used for next round of catalysis.

III. RESULTS AND DISCUSSION

A. Material characterization

The size of polydisperse Au NPs is characterized by TEM ranging from 3 nm to 60 nm, and the results are illustrated in FIG. 2 (a) and (b). The gold NPs size mostly distributes between 3–20 nm based on 500 counted particles. UV-Vis spectrum further confirms with TEM result: a broad absorption band centered at 540 nm (FIG. 2(c)). The gold NPs are relatively stable after 5 runs of catalysis, which is verified by TEM (FIG. S1 (a) and (b) in supplementary materials) and UV-Vis (FIG. S1(c) in supplementary materials), probably due to identical reaction conditions of synthesis and catalysis. UV-Vis spectrum shows 3 nm bathochromic-shift and TEM image exhibits slight aggregation.

XPS spectrum of Au (FIG. 3) indicates binding energy of Ar 4f is 84.0 and 87.6 eV, implying the elementary state of metal. Lewis acid of Au (I and III) is available for various kinds of catalytic reactions, the absence of these species eradicates the possibilities of Lewis acid catalysis. Besides, it means starch is an excellent reducing agent to reduce gold salt and extra reducing agent is absolutely unnecessary. The binding energy of O 1s from ligand starch which is found lower after stabilizing gold NPs interprets that starch serves as the capping agent (FIG. S2 in supplementary materials). Meanwhile, dehydrating of absorption band centered at 3400 and 1644 cm⁻¹ which are ascribed to OH stretch vibration in IR spectra is consistent with the XPS result (FIG. S3 in supplementary materials).
B. Results of catalytic evaluation for selective oxidation

Starch stabilized Pt/Au NPs supported on hydroxylaldehyde are characteristic for polyols oxidation with good activity [38]. In this work, water-dispersed gold NPs are employed to catalyze selective oxidation of 4-(hydroxymethyl)-benzaldehyde into 4-hydroxythylbenzoic acid while terephthalaldehyde and terephthalic acid are possible byproducts. Several oxidation agents are examined to test selectivity of starch capped gold NPs. Oxygen is the weakest agent which gives rise to nothing while the catalyst is absent (Entry 1 in Table I). When the NPs are present, negligible enhancement is observed and the catalyst prefers acid as the product (Entry 2). Metal salts K$_2$Cr$_2$O$_7$ and NaClO exhibit similar selectivity preference with or without catalyst, while less K$_2$Cr$_2$O$_7$ is required to achieve analogous conversion as NaClO does (Entry 3–6). These results indicate, in the presence of metal salt oxidizing agents, gold NPs don’t function as catalyst species. H$_2$O$_2$ is readily degradable which decomposes into water and oxygen making it environmentally benign oxidizing agent. TBHP (tert-butyl hydroperoxide) and H$_2$O$_2$ are both peroxides, and they show much better activity and selectivity, especially the latter with very high selectivity (Entry 7–10). Meanwhile, in the absence of NPs, slight conversion of substrate is acquired compared with excellent conversion when catalysts are added. Sole starch added in the system doesn’t lay any influence on the outcome (Entry 11), suggesting gold NPs are true active species. No matter what kind of oxidation agents are employed, no over-oxidized product such as terephthalic acid is detected. In this work, environment-friendly reagent H$_2$O$_2$ utilized as the oxidizing agent which gives complete conversion and absolute selectivity is in line with “sustainable development”.

The role that temperature plays in the catalysis performance is evaluated (FIG. S4 in supplementary materials). The temperature is set from 303 K to the water boiling point with 10 K increment and reaction time is overnight. It is obvious that high temperature is helpful for high conversion, however, it needs more energy. The target molecule with too low content is generated at room temperature. The substrate is completely transformed at 363 K, so 373 K is unnecessary for more yield.

The transformation process of 4-(hydroxymethyl)benzaldehyde is monitored by GC-MS (FIG. 4). From the very beginning, only trace byproduct terephthalaldehyde is detected and the pattern is kept till the end of reaction. In the first 3 h, 84% substrate is consumed. To totally convert the starting material, another 3 h is requested. After 6 h stirring, almost all the substrate is switched into target product with exclusive selectivity.

The water-dispersed gold catalysts are capable of recycling use (FIG. 5). Unreacted aldehyde and carboxylic acid are washed by organic solvent, hence, the aqueous phase could be used directly for next run of catalysis. However, some activity loss is observed in first use which drops to 82%. It’s possibly ascribed to catalyst aggregation. In the subsequent 4 tests, the yields are stable between 63% and 69%. The lower activity may be due to slight catalyst aggregation. The results demonstrate starch-capped gold NPs are highly active and recyclable up to the 5th run with little loss.
TABLE I Gold NPs catalyzed oxidation of 4-(hydroxymethyl)benzaldehyde in water with different oxidizing agenta.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidizing agent</th>
<th>Amount (equiv.)</th>
<th>Conversion/%</th>
<th>Selectivity/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxygenb</td>
<td>Balloon</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Oxygenc</td>
<td>Balloon</td>
<td>79</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>K$_2$Cr$_2$O$_7$</td>
<td>3</td>
<td>9</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>K$_2$Cr$_2$O$_7$</td>
<td>3</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>NaClOb</td>
<td>15</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>NaClOc</td>
<td>15</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>TBHPb</td>
<td>15</td>
<td>5</td>
<td>68</td>
</tr>
<tr>
<td>8</td>
<td>TBHPc</td>
<td>15</td>
<td>66</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>H$_2$O$_2$</td>
<td>15</td>
<td>9</td>
<td>$>$99</td>
</tr>
<tr>
<td>10</td>
<td>H$_2$O$_2$</td>
<td>15</td>
<td>100</td>
<td>$>$99</td>
</tr>
<tr>
<td>11</td>
<td>H$_2$O$_2$</td>
<td>15</td>
<td>9</td>
<td>$>$99</td>
</tr>
</tbody>
</table>

a Reaction conditions: 5 mL catalyst storage solution (water, 0.004 mmol), 0.1 g substrate (0.735 mmol), 6 h, 363 K. N.D. = not detected.

b No Au NPs added.

c Au NPs are present.

d No Au NPs added, only starch.

FIG. 4 Conversion-time plot of 4-(hydroxymethyl)benzaldehyde selective oxidation. Reaction condition: 5 mL catalyst storage solution (water, 0.004 mmol), 0.1 g substrate (0.735 mmol), 6 h, 363 K. The aldehyde group is relatively stable when blended with H$_2$O$_2$ and Au NPs, besides, it doesn’t react with peracid.

FIG. 5 Recyclability of gold NPs for catalytic oxidation of aldehydes. Reaction condition: 5 mL catalyst storage solution (water), 2 mmol benzaldehyde, O$_2$ balloon, 363 K, 6 h.

IV. CONCLUSION

A new heterogeneous catalysis system is established, water-dispersed gold NPs are prepared and evaluated for their excellent catalytic ability for selective oxidation of 4-(hydroxymethyl)-benzaldehyde and versatility for aldehyde derivatives. The catalyst displays complete conversion and excellent selectivity in the presence of H$_2$O$_2$. After reaction completes, slurry is washed by dichloromethane and aqueous layer containing gold NPs is separated, which doesn’t contaminate the product.

DOI:10.1063/1674-0068/cjcp1905101 ©2019 Chinese Physical Society
TABLE II Gold NPs catalyzed oxidation of 4-(hydroxymethyl)benzaldehyde in water with different oxidizing agent.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Product</th>
<th>Time/h</th>
<th>Conversion/%</th>
<th>Selectivity/%</th>
<th>TON</th>
<th>TOF/h⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CHO</td>
<td>COOH</td>
<td>0.8</td>
<td>93</td>
<td>>99</td>
<td>170.9</td>
<td>213.6</td>
</tr>
<tr>
<td>2</td>
<td>CHO</td>
<td>COOH</td>
<td>2.5</td>
<td>95</td>
<td>>99</td>
<td>174.6</td>
<td>69.8</td>
</tr>
<tr>
<td>3</td>
<td>BrCHO</td>
<td>BrCOOH</td>
<td>6</td>
<td>98</td>
<td>>99</td>
<td>180.1</td>
<td>30.0</td>
</tr>
<tr>
<td>4</td>
<td>HOCHO</td>
<td>COOH</td>
<td>6</td>
<td>94</td>
<td>>99</td>
<td>172.7</td>
<td>28.8</td>
</tr>
<tr>
<td>5</td>
<td>NO₂CHO</td>
<td>COOH</td>
<td>5</td>
<td>92</td>
<td>>99</td>
<td>169.0</td>
<td>33.8</td>
</tr>
<tr>
<td>6</td>
<td>NO₂CHO</td>
<td>COOH</td>
<td>6</td>
<td>89</td>
<td>>99</td>
<td>163.5</td>
<td>27.3</td>
</tr>
<tr>
<td>7</td>
<td>MeOCHO</td>
<td>COOH</td>
<td>6</td>
<td>92</td>
<td>>99</td>
<td>169.0</td>
<td>28.2</td>
</tr>
<tr>
<td>8</td>
<td>BrCHO</td>
<td>BrCOOH</td>
<td>5</td>
<td>96</td>
<td>>99</td>
<td>176.4</td>
<td>35.3</td>
</tr>
</tbody>
</table>

Note: reaction conditions: 5 mL catalyst storage solution (water, 0.004 mmol), 0.735 mmol substrate, 363 K.

FIG. 6 Schematic illustrating of possible mechanism.

Supplementary materials:

The additional figures and spectroscopic data of catalytic products can be found in the supplementary information document accompanying this article.

V. ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No.11674001), the Ministry of Education, Anhui Provincial Natural Science Foundation (No.1708085MA07 and No.1608085QB39), and Doctoral Startup Foundation of Anhui University (No.10113190077).

Biomass starch is used as protecting ligand and reducing agent, water is employed in synthesis and catalysis of protocol, both make the gold catalysts good candidates for “sustainable development”.

DOI:10.1063/1674-0068/cjcp1905101 ©2019 Chinese Physical Society

DOI:10.1063/1674-0068/cjcp1905101 ©2019 Chinese Physical Society