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In this work we construct a novel dissipaton-equation-of-motion (DEOM) theory in quadratic
bath coupling environment, based on an extended algebraic statistical quasi-particle ap-
proach. To validate the new ingredient of the underlying dissipaton algebra, we derive an
extended Zusman equation via a totally different approach. We prove that the new theory,
if it starts with the identical setup, constitutes the dynamical resolutions to the extended
Zusman equation. Thus, we verify the generalized (non-Gaussian) Wick’s theorem with
dissipatons-pair added. This new algebraic ingredient enables the dissipaton approach be-
ing naturally extended to nonlinear coupling environments. Moreover, it is noticed that,
unlike the linear bath coupling case, the influence of a non-Gaussian environment cannot
be completely characterized with the linear response theory. The new theory has to take
this fact into account. The developed DEOM theory manifests the dynamical interplay be-
tween dissipatons and nonlinear bath coupling descriptors that will be specified. Numerical
demonstrations will be given with the optical line shapes in quadratic coupling environment.
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I. INTRODUCTION

Quantum dissipation plays crucial roles in many fields
of modern science. Exact theories include the Feynman-
Vernon influence functional path integral approach
[1], and its differential equivalence, the hierarchical-
equations-of-motion (HEOM) formalism [2–6]. How-
ever, almost all existing quantum dissipation theories
exploit the Gaussian-Wick’s thermodynamical statis-
tics [7–9], which is strictly valid only for linear bath
couplings. Intrinsically, a linear bath coupling implies
a weak backaction of system on environment. The
lowest non-Gaussian environment influence requires a
quadratic bath coupling.

In this work, we extend the dissipaton equation of
motion (DEOM) theory [10, 11] to treat the linear-
plus-quadratic bath coupling environment. This the-
ory goes with a statistical quasi-particle (“dissipaton”)
description for the hybrid environment that can be ei-
ther bosonic or fermionic or excitonic. Dynamical vari-
ables in DEOM are the dissipaton density operators
(DDOs), for both the reduced system and the hybrid
bath dynamics [10, 11]. The latter could also be mea-
sured experimentally, via such as the Fano interfer-
ence [12–16], vibronic spectroscopy with non-Condon
polarized environment [17], and transport current noise
spectrum [18].
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Dissipaton algebra plays essential roles [10, 11]. It
consists of the generalized (non-Gaussian) Wick’s theo-
rem and the generalized diffusion equation. This noval
algebra leads to the rules on how the DDOs evolves
in time, and further on their relations to experimen-
tal measurable quantities that involve explicitly the hy-
brid bath dynamics [14–18]. From the algebraic con-
struction point of view, the new DEOM theory in quest
amounts to the establishment of the generalized Wick’s
theorem with dissipatons-pairs added. This will be the
new ingredient of the dissipaton algebra for treating the
quadratic bath coupling in study.

Another important issue is concerned with the char-
acterization of nonlinear coupling bath. On top of the
interacting bath correlation function description [7–9],
additional information would be needed. This is a gen-
eral concern in any non-Gaussian environment theories.
To address this issue, we propose a polarization model
to determine both the linear and nonlinear bath cou-
pling strengths. This model resolves this issue, with a
single additional parameter, on top of the conventional
linear response theory.

In this work, we construct the DEOM formalism, via
the dissipaton algebra, including the aforementioned
new ingredient for treating quadratic bath coupling.
We validate this new ingredient, the generalized Wick’s
theorem with dissipatons-pairs added. To do that we
derive an extended Zusman equation via a totally dif-
ferent approach. We prove that the DEOM formalism,
if it started with the same setup, constitutes the dy-
namical resolutions to the extended Zusman equation.
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Therefore, as the algebraic construction is concerned,
we would have also confirmed the DEOM formulations.
The linear and quadratic bath coupling strength pa-
rameters, will be discussed on the basis of the nonlinear
polarization model. Numerical DEOM demonstrations
are then carried out on the optical line shapes in the
nonlinear coupling environment.

II. DISSIPATON DYNAMICS THEORY

A. Statistical quasi-particle description

Let us start with the total composite Hamiltonian,

HT = HS + hB + Q̂S(α1x̂B + α2x̂
2
B) (1)

The system Hamiltonian HS and dissipative operator
Q̂S are arbitrary. The latter is set to be dimension-
less. The bath Hamiltonian and the hybridization bath
operator (solvation mode) are given, respectively,

hB =
1

2

∑
j

ωj(p̂
2
j + q̂2j ) (2)

x̂B =
∑
j

cj q̂j (3)

Throughout this work we set ~=1 and β=1/(kBT ), with
kB and T being the Boltzmann constant and temper-
ature. Let ⟨Ô⟩B≡trB

(
Ôe−βhB

)
/trBe

−βhB be the bare

bath ensemble average. Define x̂B(t)≡eihBtx̂Be
−ihBt.

Set hereafter t ≥ 0 for the time variable. We have [7, 9]

⟨x̂B(t)x̂B(0)⟩B =
1

π

∫ ∞

−∞
dω

e−iωtχ
(i)
B (ω)

1− e−βω

=
K∑

k=1

ηke
−γkt (4)

The first expression in Eq.(3) is the fluctuation-

dissipation theorem [7, 9], with χ
(i)
B (ω) being the imag-

inary part of

χB(ω) ≡ i

∫ ∞

0

dt eiωt⟨[x̂B(t), x̂B(0)]⟩B (5)

The second expression of Eq.(4) presents an exponen-
tial series expansion of the linear bath correlation func-
tion. Set hereafter x̂B to be dimensionless, so that the
bath coupling parameters, α1 and α2 in Eq.(1), are of
frequency unit. It is well known that, for a complete
characterization of the nonlinear environment influence
(α2 ̸=0), additional information, on top of Eq.(4), is
needed. We will address this issue latter.

Dissipatons, {f̂k}, arise strictly via the linear bath
coupling part, as follows:

x̂B =
K∑

k=1

f̂k (6)

with

⟨f̂k(t)f̂j(0)⟩B = δkjηke
−γkt

⟨f̂j(0)f̂k(t)⟩B = δkjη
∗
k̄e

−γkt
(7)

The associated index k̄ in the second expression above is
defined via γk̄≡γ∗k . It is easy to verify that both Eq.(4)
and its time reversal are reproduced. Denote for later
use

⟨f̂kf̂j⟩>B ≡ ⟨f̂k(0+)f̂j(0)⟩B = δkjηk

⟨f̂j f̂k⟩<B ≡ ⟨f̂j(0)f̂k(0+)⟩B = δkjη
∗
k̄

(8)

They differ from ⟨f̂kf̂j⟩B, which will also appear explic-
itly in the dissipaton algebra (cf. Eq.(13) and Eq.(14)).

From Eq.(6), we have ⟨x̂2B⟩B=
∑
kj

⟨f̂kf̂j⟩B.

As defined in Eq.(7), dissipatons {f̂k} are statistically
independent quasi-particles. Each of them is a macro-
scopic linear combination of bath degrees of freedoms.

Individual f̂k is characterized by a single damping pa-
rameter, γk, that can be complex, and a joint-pair of
interacting strength parameters, ηk and η∗

k̄
.

B. Dissipaton algebra and DEOM formalism

Dynamical variables in DEOM are dissipaton density
operators (DDOs) [10, 11]:

ρ(n)n (t) ≡ ρ
(n)
n1···nK (t) ≡ trB

[
(f̂nK

K · · · f̂n1
1 )◦ρT(t)

]
(9)

The dissipatons product inside (· · · )◦ is irreducible, such
that (c-number)◦=0. Bosonic dissipatons satisfy the

symmetric permutation, (f̂kf̂j)
◦=(f̂j f̂k)

◦. Physically,
each DDO of Eq.(9) stands for a given configuration
of the total n = n1 + · · · + nk dissipatons. Denote for
the use below the associated DDO’s index, n±

k , which
differs from n ≡ n1 · · ·nK at the specified nk by ±1.
Similarly, n±±

kj differs from n at the specified nk and nj
that are replaced by nk ± 1 and nj ± 1, respectively.

The DEOM formalism can be easily constructed via
the algebraic dissipaton approach [10, 11]. The con-
struction starts with applying the Liouville-von Neu-
man equation, ρ̇T(t) = −i[HS+hB+HSB, ρT(t)], for the
total density operator in Eq.(9). The bath hB-action
and the system-bath couplingHSB-action are then read-
ily evaluated with the generalized diffusion equation and
the generalized Wick’s theorem, respectively.

The generalized diffusion equation arises from the
single-damping parameter characteristic, as shown in
Eq.(7), for both its forward and backward correlation
functions. This feature leads to [10, 11]

trB

[(∂f̂k
∂t

)
B
ρT(t)

]
= −γk trB

[
f̂kρT(t)

]
(10)
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Together with
(
∂f̂k/∂t

)
B
= −i[f̂k, hB], the generalized

diffusion equation leads immediately to

i trB
{
(f̂nK

K · · · f̂n1
1 )◦[hB, ρT(t)]

}
= i trB

{[
(f̂nK

K · · · f̂n1
1 )◦, hB

]
ρT(t)

}
=

(
K∑

k=1

nkγk

)
ρ(n)n (t) (11)

This is the bath hB-action contribution to the DDOs dy-
namics. The generalized diffusion Eq.(10) or Eq.(11),
with an arbitrary total composite ρT(t), has been vali-
dated previously [10, 11].

The generalized Wick’s theorem (GWT) deals with
the system-bath coupling HSB-action [10, 11]. In this
work this theorem has two ingredients, GWT-1 and
GWT-2, in relation to the linear and quadratic bath
couplings, respectively. The GWT-1 reads [10, 11]

trB
[
(f̂nK

K · · · f̂n1
1 )◦f̂jρT(t)

]
= ρ

(n+1)

n+
j

(t) +∑
j

nk⟨f̂kf̂j⟩>Bρ
(n−1)

n−
k

(t) (12)

The expression for trB
[
(f̂nK

K · · · f̂n1
1 )◦ρT(t)f̂j

]
is similar,

but goes with ⟨f̂j f̂k⟩<B . It together with ⟨f̂kf̂j⟩>B is de-
fined in Eq.(8). The GWT-1 has been well established
and used in evaluating the commutator action of linear
bath coupling terms [10, 11].

The GWT-2 is concerned with the quadratic bath

couplings, where a pair of dissipatons (f̂j f̂j′) partici-
pate in simultaneously without time-ordering. This new
ingredient of dissipaton algebra would read

trB
[
(f̂nK

K · · · f̂n1
1 )◦(f̂j f̂j′)ρT(t)

]
=
∑
k

nk⟨f̂kf̂j⟩>B ·

trB
[
(f̂nK

K · · · f̂nk−1
k · · · f̂n1

1 )◦f̂j′ρT(t)
]
+

trB
[
(f̂nK

K · · · f̂n1
1 f̂j)

◦f̂j′ρT(t)
]

(13)

with the last term being evaluated as

trB
[
(f̂nK

K · · · f̂n1
1 f̂j)

◦f̂j′ρT(t)
]
= ρ

(n+2)

n++

jj′
(t) +

⟨f̂j f̂j′⟩Bρ(n)n (t) +
∑
k

nk⟨f̂kf̂j′⟩>Bρ
(n)

n−+
kj

(t) (14)

Together with the first term in Eq.(13) being evaluated
via GWT-1, we obtain

trB
[
(f̂nK

K · · · f̂n1
1 )◦(f̂j f̂j′)ρT(t)

]
= ρ

(n+2)

n++

jj′
(t) +

⟨f̂j f̂j′⟩Bρ(n)n (t) +
∑
k

nk
[
⟨f̂kf̂j⟩>Bρ

(n)

n−+

kj′
(t) +

⟨f̂kf̂j′⟩>Bρ
(n)

n−+
kj

(t)
]
+
∑
k,k′

nk(nk′ − δkk′)

⟨f̂kf̂j⟩>B⟨f̂k′ f̂j′⟩>Bρ
(n−2)

n−
k

−
k′

(t) (15)

The expression for trB
[
(f̂nK

K · · · f̂n1
1 )◦ρT(t)(f̂j f̂j′)

]
is

similar, but with each individual ⟨f̂kf̂j⟩>B being replaced

by ⟨f̂j f̂k⟩<B . The GWT-2 is to be used in the evaluation
of the quadratic bath coupling contribution.

The DEOM formalism in the presence of both lin-
ear and quadratic bath couplings can now be readily
constructed via the above dissipaton algebra. The final
results read

ρ̇(n)n = −
(
iLeff +

∑
k

nkγk

)
ρ(n)n − i2α2

∑
kj

nkCkρ(n)n−+
kj

−

iα2

∑
kj

[
Aρ(n+2)

n++
kj

+ nk(nj − δjk)Bkjρ
(n−2)

n−−
kj

]
−

iα1

∑
k

(
Aρ(n+1)

n+
k

+ nkCkρ(n−1)

n−
k

)
(16)

Here,

LeffÔ ≡ [Heff , Ô] AÔ ≡
[
Q̂S, Ô]

BkjÔ ≡ ηkηjQ̂SÔ − η∗k̄η
∗
j̄ ÔQ̂S

CkÔ ≡ ηkQ̂SÔ − η∗k̄ÔQ̂S

(17)

with

Heff ≡ HS + α2⟨x̂2B⟩BQ̂S (18)

Evidently, the dissipatons defined in Eqs.(4)−(7) are
strictly based on the linear bath coupling part that sat-
isfies Gaussian-Wick’s statistics [7–9]. The quadratic
non-Gaussian bath influences are treated via the GWT-
2, Eq.(15). This is the virtue of the DEOM theory that
includes the powerful dissipaton algebra [10, 11]. In
general, Eqs. (10)−(15) are all non-Gaussian operators
in the system subspace.

III. VALIDATION ON DISSIPATON ALGEBRA WITH
EXTENDED ZUSMAN EQUATION

This section is devoted to validating the GWT-2,
Eqs. (13) and (14), the new ingredient of the dissipa-
ton algebra presented above. It together with the well-
established Eqs. (10) and (12) lead immediately and un-
ambiguously to the extended DEOM (Eq.(16)). There-
fore, from the algebraic construction point of view, the
required validation can be made with the dissipaton ba-
sis set of size K=1. This amounts to the formal setting
Eq.(4) with

⟨x̂B(t)x̂B(0)⟩B ≃ ηe−γt (19)

The dissipaton index n can be omitted; i.e., ρ
(n)
n (t)=

ρ(n)(t) ≡ ρ̂n(t), for the basis set sizeK=1 case, in which
the DEOM (Eq.(16)) reads

˙̂ρn(t) = −(iLeff + nγ + i2α2nC)ρ̂n(t)−
iα2 [Aρ̂n+2(t) + n(n− 1)Bρ̂n−2(t)]−

iα1 [Aρ̂n+1(t) + nCρ̂n−1(t)] (20)
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The involving superoperators A, B and C, are the same
as those in Eq.(17), but without dissipaton indexes.

In the following, on the basis of Eq.(19) which will
be called the Zusman setup, we construct the extended
Zusman equation via a totally different approach. By
showing that the extended Zusman equation is identical
to Eq.(20), we validate the dissipaton algebra and thus
the extended DEOM theory, Eq.(16). The proof here is
rigourous, due to the nature of the algebraic construc-
tion, despite of the fact that the Zusman setup, Eq.(19),
itself could even be a bad approximation.

It is well known that the Zusman setup, Eq.(19), is
equivalent to the combination of the high-temperature
(HT) and the Smoluchowski limits. The HT limit is
characterized with

1

1− e−βω
≃ 1

βω
+

1

2
(21)

In this case, the solvation mode is a classical Brownian
motion in the secondary bath environment. The latter

exerts a stochastic force F̃ (t) and friction constant ζ
on the solvation mode. The corresponding Langevin
equation reads

ṗB(t) = −ωBxB(t)− ζpB(t) + F̃ (t) (22)

with

⟨F̃ (t)F̃ (0)⟩HT =
2ζ

βωB
δ(t) + i

ζ

ωB
δ̇(t) (23)

This is the high-temperature fluctuation-dissipation
theorem. The resultant Caldeira-Leggett’s equation
reads [19–21]

∂

∂t
ρ̂HT

W = −(iLS + L̂FP)ρ̂
HT

W +
∂

∂pB

(α1

2
+ α2xB

)
·

{Q̂S, ρ̂
HT

W } − i

(
α1xB + α2x

2
B − α2

4

∂2

∂p2B

)
[Q̂S, ρ̂

HT

W ](24)

Here, ρ̂HT
W ≡ ρ̂HT

W (xB, pB; t) denotes the reduced system-
plus-solvation density operator in the HT limit, with
the solvation mode in the Wigner representation. While
LS · ≡[HS · ] is the system Liouvillian, L̂FP in Eq.(24) is
the Fokker-Planck operator [22],

L̂FP = ωB

( ∂

∂xB
pB − ∂

∂pB
xB

)
− ζ

βωB

∂2

∂p2B
− ζ

∂

∂pB
pB

(25)
To complete the Zusman setup, Eq.(19), consider fur-
ther the Smoluchowski (or strongly-overdamped) limit;
i.e., ζ≫ωB, whereas ω

2
B/ζ=γ remains finite to be the

exponent in Eq.(19). Moreover, it is easy to show that
⟨x2B⟩B = ⟨p2B⟩B → (βωB)

−1, in the high-temperature
limit. The identities here will be used in eliminating
the appearance of βωB in the formulations below. The
pre-exponential coefficient in Eq.(19) reads then

η ≡ ηr + iηi = ⟨x2B⟩B
(
1− iβγ

2

)
(26)

In the strongly-overdamped limit, the momen-
tum pB would no longer be a correlated dy-
namical variable. The equation of motion for
ρ̂(xB; t)=

∫
dpBρ̂W(xB, pB; t), which is closed now,

can be obtained via the standard Fokker-Planck-
Smoluchowski algorithm [22].

Another equivalent but much simpler approach is the
so-called diffusion mapping method [23]; i.e., mapping
each individual pB-space variable to its limiting diffu-
sive xB-space correspondence. This method makes a
simple use of the Langevin equation Eq.(22), which in
the strongly-overdamped limit reduces to

0 = −ṗB = ωBxB + ζpB − F̃ (t) (27)

Consider further the following two thermodynamic re-
lations,

∂

∂pB
ρ̂HT

W = − 1

⟨p2B⟩B
pBρ̂

HT

W

∂

∂xB
ρ̂HT

W = − 1

⟨x2B⟩B
xBρ̂

HT

W

(28)

Together with pB/xB≃−ωB/ζ, as implied in Eq.(27),
and ⟨x2B⟩B=⟨p2B⟩B in study here, we would have then

∂

∂pB
ρ̂HT

W ≃ ωB

ζ

∂

∂xB
ρ̂HT

W (29)

The above results of the Zusman setup lead to the fol-
lowing rules of diffusion mapping [23],

∂

∂pB
=⇒ ωB

ζ

∂

∂xB
(30)

pB =⇒ −⟨x2B⟩B
ωB

ζ

∂

∂xB
(31)

The Smoluchowski limit to the Calderia-Leggett’s mas-
ter equation is now readily obtained by replacing all
those pB-dependent operators in Eq.(24) and Eq.(25).
In particular, the Fokker-Planck operator becomes the
Smoluchowski or diffusion operator,

L̂FP =⇒ L̂D ≡ −γ
(
ηr

∂2

∂x2B
+

∂

∂xB
xB

)
(32)

While ηr=⟨x2B⟩B was defined in Eq.(26), γ=ω2
B/ζ as-

sumes the diffusion constant here. The Smoluchowski
limit of Eq.(24) has an extended Zusman equation form,

∂

∂t
ρ̂(xB; t) + (iLS + L̂D)ρ̂(xB; t) = −i

[
α1xB +

α2

(
x2B − η2i

∂2

∂x2B

)][
Q̂S, ρ̂(xB; t)

]
− 2ηi

∂

∂xB[(α1

2
+ α2xB

){
Q̂S, ρ̂(xB; t)

}]
(33)

This recovers the conventional Zusman equation
[24−26], in the absence of the quadratic bath coupling
(α2=0).
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We have also derived Eq.(33) via the standard
Fokker-Planck-Smoluchowski approach [22]; however,
the derivations are too mathematical and tedious, see
Appendix for details. The present universal diffusion
mapping approach with Eq.(30) and Eq.(31) is much
simpler and physically more appealing.

It is easy to verify that the DEOM formalism,
Eq.(20), is just the dynamical resolution to the ex-
tended Zusman Eq.(33). More precisely,

ρ̂n(t) =
(ηr
2

)n/2∫ ∞

−∞
dxBHn

( xB√
2ηr

)
ρ̂(xB; t) (34)

or

ρ̂(xB; t) =
∞∑

n=0

ϕn(xB)ρ̂n(t) (35)

where Hn(x) is the nth-order Hermite polynomial, and

ϕn(xB) =
(2ηr)

−n/2

n!
√
2πηr

exp
(
− x2B
2ηr

)
Hn

( xB√
2ηr

)
(36)

We have thus validated the dissipaton algebra,
Eqs.(10)−(15). This is the purpose of the above
comparisons between the dissipaton approach and
the present system-and-solvation composite description.
The dissipaton algebra, including the new ingredient,
Eq.(13) and Eq.(14), the generalized Wick’s theorem
with dissipatons-pairs added, is also by de facto estab-
lished. Therefore, the extended DEOM Eq.(16) for gen-
eral cases is also validated, due to its algebraic construc-
tion nature.

IV. INTERPLAY BETWEEN DISSIPATONS AND
ENVIRONMENT PARAMETERS

Turn to the issue on the bath coupling parameters,
α1 and α2. It is crucial to have a physical support on
the nonlinear coupling bath descriptors. This issue is
directly related to the extended DEOM theory, which
should describe the dynamical interplay between dis-
sipatons and nonlinear bath couplings. Erroneous de-
scriptors of α1 and α2 would result in unphysical DEOM
dynamics.

In the following, we propose a polarization model to
determine both α1 and α2. For clarity, we consider a
chromophore system, with its ground |g⟩ and an excited
|e⟩ states being engaged in optical excitations. The to-
tal system-and-bath composite Hamiltonian in the pres-
ence of external classical laser field E(t) assumes

HT(t) = hg|g⟩⟨g|+ (he + ωeg)|e⟩⟨e| − µ̂SE(t) (37)

with µ̂S = µ(|g⟩⟨e|+ |g⟩⟨e|) and

he − hg = α0 + α1x̂B + α2x̂
2
B (38)

Here, hg and he denote the bath Hamiltonians associat-
ing with the ground and excited system states, respec-
tively. Eq.(37) assumes the form of Eq.(1); i.e.,

HT(t) = HS(t) + hB + Q̂S(α1x̂B + α2x̂
2
B) (39)

with the system Hamiltonian and dissipative mode,

HS(t) = (ωeg + α0)|e⟩⟨e| − µ̂SE(t) (40)

Q̂S = |e⟩⟨e| (41)

In Eq.(39) the bath Hamiltonian goes with hB = hg.
The polarization model assumes

hg =
1

2
ωB(p̂

2
B + x̂2B) + hintB (x̂B; q̃)

he =
1

2
ω′
B(p̂

′2
B + x̂′2B ) + hintB (x̂′B; q̃)

(42)

where p̂′B = (ωB/ω
′
B)

1/2p̂B,

x̂′B =
(ω′

B

ωB

)1/2
(x̂B − dB) (43)

and

hintB (x̂B; q̃) =
1

2

∑
k

ω̃k

[
p̃2k + (q̃k − c̃kx̂B)

2
]

(44)

The physical picture of this model is as follows. The
system is initially in the ground |g⟩ state, with x̂B de-
scribing its first solvation shell of frequency ωB. Upon
excitation, the system in the excited |e⟩ state experi-
ences different solvation environment. The reorganized
first-shell solvation is described with x̂′B. It has differ-
ent frequency, ω′

B, and is also linearly shifted by dB,
with respective to the ground-state solvation shell. The
secondary environment (q̃) remains unchanged, as de-
scribed by the same hintB (XB; q̃), for its interacting with
either XB=x̂B or x̂′B solvation mode. Apparently, the
quadractic bath coupling vanishes when ω′

B=ωB.
The coupling strength of secondary bath with the sol-

vation mode is given by

η̃ ≡
∑
k

ω̃k c̃
2
k (45)

The renormalized frequencies for x̂B and x̂′B would be

ω̃B = ωB + η̃ (46)

ω̃′
B = ω′

B + η̃ (47)

respectively.
To proceed, we consider first the linear–

displacement–mapping (LDM) ansatz. Let h
(1)
e

be the special case of he at ω′
B=ωB. The LDM ansatz

assumes h
(1)
e −hg , due to a linear displacement dB, be

the result within linear response theory. That is [9]

h(1)e − hg =
1

2
ω̃Bd

2
B − dB(ω̃Bx̂B − F̃ )

= λ−
√
2λωBx̂B (48)
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Here,

F̃ =
∑
k

ω̃k c̃k q̃k (49)

Consequently,

λ =
1

2
ω̃Bd

2
B (50)

and also
√
2λωBx̂B=dB(ω̃Bx̂B− F̃ ). Together with con-

sidering the secondary–bath–free limit, where F̃=0 and
ω̃B = ωB, we obtain

F̃ = ω̃B

(
1−

√
ωB/ω̃B

)
x̂B (51)

This relates the secondary bath, F̃ of Eq.(49), to the
solvation coordinate x̂B.

Substituting Eqs.(42)−(51) for Eq.(38), followed by
some elementary algebra, we obtain

α0 = θθ̃λ

α1 =
√
2θλωB

(
1 +

√
θθ̃ − 1

r

)
α2 =

ω̃B

2

[
2(
√
θ − 1)r + (θθ̃ − 2

√
θ + 1)

] (52)

where

θ ≡ ω′
B

ωB
, θ̃ ≡ ω̃′

B

ω̃B
, r ≡

√
ωB

ω̃B
(53)

Apparently, α2=0 if ω′
B=ωB.

Moreover, the bath coupling α-parameters of Eq.(52)
should go along with the underlying interplay with the
dissipatons defined in Eqs.(4)−(7). Given the temper-

ature, dissipatons are determined by χ
(i)
B (ω). On the

other hand, the α-parameters in Eq.(52) are functions
of η̃, ωB, ω

′
B and λ. While the latter two are free vari-

ables, η̃ and ωB are dictated by the same χ
(i)
B (ω) that

determines the dissipatons. For the secondary bath cou-
pling strength parameter (Eq.(45)), we have [9]

η̃ =
1

π

∫ ∞

−∞
dω

J̃(ω)

ω
(54)

Here, J̃(ω) denotes the interacting secondary bath spec-
tral density that can be expressed in terms of [9]

J̃(ω) =
χ
(i)
B (ω)

|χB(ω)|2
(55)

Note that χB(ω)≡χ(r)
B (ω)+iχ

(i)
B (ω) is completely de-

termined by either the real or imaginary part via the
Kramers-Kronig relation [7–9]. For the solvation mode
frequency, we have [9]

ωB =
1

χB(0)
=

1

π

∫ ∞

−∞
dω ωχ

(i)
B (ω) (56)

FIG. 1 Evaluated absorption lineshapes. See text for the
details.

Here, χB(0)=χ
(r)
B (0), as χ

(i)
B (ω=0)=0. The Kramers-

Kronig relation reads here [7–9]

χB(0) =
1

π

∫ ∞

−∞
dω

χ
(i)
B (ω)

ω
(57)

The above identities describe the determination of ωB

via any given χ
(i)
B (ω). Actually, Eq.(56) follows in line

with the definition of χB(ω) in Eq.(5).
For numerical illustrations, we adopt the Drude

model for the secondary bath. The resultant χB(ω),
which supports Eqs.(54)−(57), reads

χB(ω) =
ωB

ω2
B − ω2 +

η̃ωBω

ω + iγ̃

(58)

We set the parameters (in unit of ωB) γ̃=10 and
η̃=20, at kBT=1; and also λ=1 for nonzero linear bath
coupling strength. FIG. 1 depicts the evaluated lin-
ear absorption spectra, at four representing values of
θ=ω′

B/ωB. When θ=1 there is only the linear bath cou-
pling. The other three (solid) curves with θ ̸=1 are of
both the linear and the quadratic bath couplings, which
are presented in parallel with their linear-free (thin)
counterparts. In contrast with the pure linear bath
coupling (θ=1) case, the spectrum lineshape is gen-
erally asymmetric. The observed skews in individual
lineshape profiles, which show non-monotonic depen-
dence on θ, are all in qualitative agreements with the
secondary-bath-free but analytical results [27].

V. CONCLUSION

Evidently, the dissipaton algebra leads readily to the
DEOM formalism. The key contribution of this work
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is the establishment of the generalized Wick’s theo-
rem with a pair of dissipatons added; i.e., the GWT-
2, Eq.(13) and Eq.(14). The other ingredients of the
dissipaton algebra had all been well established in our
previous work [10, 11].

The new ingredient, Eq.(13) and Eq.(14), which
is now verified unambiguously, can be used consec-
utively to treat further higher-order nonlinear bath
couplings. For example, the GWT-3, illustrated with
the dissipaton-basis-set size of one, would go with [cf.
Eq.(13)]

trB
[
(f̂n)◦(f̂ f̂ f̂)ρT

]
= n⟨f̂ f̂⟩>BtrB

[
(f̂n−1)◦(f̂ f̂)ρT

]
+

trB
[
(f̂nf̂)◦(f̂ f̂)ρT

]
(59)

While the first quantity is evaluated by using Eq.(13)
and Eq.(14), the second quantity would be

trB
[
(f̂nf̂)◦(f̂ f̂)ρT

]
= ⟨f̂2⟩BtrB

[
(f̂n)◦f̂ρT

]
+

n⟨f̂ f̂⟩>BtrB
[
(f̂n−1f̂)◦f̂ρT

]
+

trB
[
(f̂nf̂ f̂)◦f̂ρT

]
(60)

The first two quantities are evaluated via the GWT-
1 and the GWT-2 of Eq.(14), respectively. The last
quantity above goes with

trB
[
(f̂nf̂ f̂)◦f̂ρT

]
= ρ(n+3) + (2⟨f̂2⟩B +

n⟨f̂ f̂⟩>B)ρ
(n+1) (61)

The GWT-3 is then completed. The GWT-n follows
the same recursive procedure. Thus, the present work
represents a major advancement in the DEOM theory,
with the specified class of non-Gaussian coupling en-
vironments that could be physically characterized, as
illustrated in this work.
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APPENDIX A: The Smoluchowski limit: Conventional
approach

This appendix utilizes the standard textbook ap-
proach of Ref.[22] to derive the extended Zusman
Eq.(33). This is the application of the Smoluchowski
limit to the Caldeira-Leggett’s equation (Eq.(24)), and
derive the closed equation for

ρ̂(xB; t) =

∫ ∞

−∞
dpB ρ̂

HT
W (xB, pB; t) (A1)

We start with the FP operator, Eq.(25), which has the
coherent and incoherent contributions:

L̂FP = L̂coh
FP + L̂incoh

FP (A2)

where

L̂coh
FP = ωB

(
∂

∂xB
pB − ∂

∂pB
xB

)
L̂incoh
FP = −ζ ∂

∂pB

(
1

βωB

∂

∂pB
+ pB

) (A3)

It is easy to obtain [22]

L̃incoh
FP ≡ ψ−1

0 (pB)L̂
incoh
FP ψ0(pB) = ζâ†â (A4)

where

ψ0(pB) =

(
βωB

2π

)1/4

exp

(
−βωB

4
p2B

)
(A5)

and

â =

√
βωB

2
pB +

1√
βωB

∂

∂pB

â† =

√
βωB

2
pB − 1√

βωB

∂

∂pB

(A6)

These are the bosonic annihilation and creation oper-
ators, satisfying [â, â†]=1. The normalized eigen solu-
tions to Eq.(A4) are therefore

L̃incoh
FP ψn(pB) = nψn(pB), n = 0, 1, · · · , (A7)

with the ground state ψ0(pB) of Eq.(A5) and

â†ψn(pB) =
√
n+ 1ψn+1(pB) (A8)

Apparently, {ψn(pB)} are all real.
On the other hand, from Eq.(A6), we evaluate

∂̃

∂pB
≡ ψ−1

0 (pB)
∂

∂pB
ψ0(pB) = −

√
βωBâ

†

p̃B ≡ pB =
1√
βωB

(â+ â†)

(A9)

The transformed L̃coh
FP≡ψ−1

0 (pB)L̂
coh
FPψ0(pB) in Eq.(A3)

reads then

L̃coh
FP = ωB

[ 1√
βωB

∂

∂xB
(â+ â†) +

√
βωBxBâ

†
]

(A10)

We have also

∂̃2

∂p2B
=
( ∂̃

∂pB

)2
= βωBâ

† 2 (A11)

DOI:10.1063/1674-0068/30/cjcp1706123 c⃝2017 Chinese Physical Society



402 Chin. J. Chem. Phys., Vol. 30, No. 4 Rui-Xue Xu et al.

Turn now to the transformed Caldeira–Leggett’s
equation (Eq.(24)),

∂

∂t
ρ̃ HT
W = −[iLS + (L̃coh

FP + L̃incoh
FP )]ρ̃ HT

W +
(α1

2
+

α2xB

){
Q̂S,

∂̃

∂pB
ρ̃ HT
W

}
− i
(
α1xB +

α2x
2
B − α2

4

∂̃2

∂p2B

)
[Q̂S, ρ̃

HT
W ] (A12)

for

ρ̃ HT
W (xB, pB; t) ≡ ψ−1

0 (pB)ρ̂
HT
W (xB, pB; t)

=

∞∑
n=0

ρ̃n(xB; t)ψn(pB) (A13)

The second expression goes with the complete and or-
thonormal basis set of {ψn(pB);n = 0, 1, · · · }. There-
fore,

ρ̃n(xB; t) =

∫ ∞

−∞
dpB ψn(pB)ρ̃

HT
W (xB, pB; t) (A14)

Together with Eqs.(A4)–(A11), we obtain

∂

∂t
ρ̃n = −(iLS + nζ)ρ̃n − i(α1xB + α2x

2
B)[Q̂S, ρ̃n]−

ωB

√
n+ 1

√
βωB(D̂ − xB)ρ̃n+1 −

ωB

√
n
√
βωBD̂ρ̃n−1 −

√
n
√
βωB

(α1

2
+ α2xB

){
Q̂S, ρ̃n−1

}
+

i
√
n(n− 1)

α2

4
βωB[Q̂S, ρ̃n−2] (A15)

where

D̂ ≡ (βωB)
−1 ∂

∂xB
+ xB (A16)

Consider now the Smoluchowski limit, where ζ≫ωB.
To derive a single closed equation in this limit, it
requires further [22] (i) the core Hamiltonian, HS+

Q̂S(α1xB+α2x
2
B), could be neglected compared to the

friction, ζ; (ii) ∂tρ̃n>0=0; and (iii) ρ̃n>2=0, as the bath
coupling is considered up to the quadratic level, cf.
Eq.(A15). Consequently, while

∂

∂t
ρ̃0 = −iLSρ̃0 − i(α1xB + α2x

2
B)[Q̂S, ρ̃0]−

ωB

√
βωB(D̂ − xB)ρ̃1 (A17)

Eq.(A15) with n = 1 and 2 becomes, respectively,

0 = −ζρ̃1 − ωB

√
2
√
βωB(D̂ − xB)ρ̃2 −

ωB

√
βωBD̂ρ̃0 −

√
βωB

(α1

2
+ α2xB

){
Q̂S, ρ̃0

}
(A18)

0 = −2ζρ̃2 − ωB

√
2
√
βωBD̂ρ̃1 −

√
2
√
βωB ·(α1

2
+ α2xB

){
Q̂S, ρ̃1

}
+ i

√
2
α2

4
βωB[Q̂S, ρ̃0]

(A19)

The latter two, together with Eq.(A16) and γ≡ω2
B/ζ,

result in

ζρ̃1 =
ωB

ζ

∂

∂xB

[
ωBD̂ρ̃1 +

(α1

2
+ α2xB

){
Q̂S, ρ̃1

}]
−

i
α2

4

βγ√
βωB

∂

∂xB
[Q̂S, ρ̃0]− ωB

√
βωBD̂ρ̃0 −√

βωB

(α1

2
+ α2xB

){
Q̂S, ρ̃0

}
≈ −iα2

4

βγ√
βωB

∂

∂xB
[Q̂S, ρ̃0]− ωB

√
βωBD̂ρ̃0

−
√
βωB

(α1

2
+ α2xB

){
Q̂S, ρ̃0

}
(A20)

The second expression is obtained by considering the
Smoluchowski limit where ζ≫ωB. Note also (cf.
Eqs.(32) and (A16))

L̂D = −γ ∂

∂xB
D̂ (A21)

and (cf. Eq.(26))

ηr = ⟨x2B⟩B = (βωB)
−1

ηi = −βγ⟨x
2
B⟩B

2
= − γ

2ωB

(A22)

The high-temperature relation is used here; see com-
ments after Eq.(25). Substituting Eqs.(A20)–(A22) into
Eq.(A17), followed by some simple algebra, we obtain

∂

∂t
ρ̃0 = −(iLS + L̂D)ρ̃0 − i

[
α1xB + α2

(
x2B − η2i

∂2

∂x2B

)]
·

[
Q̂S, ρ̃0

]
− 2ηi

∂

∂xB

[(α1

2
+ α2xB

){
Q̂S, ρ̃0

}]
(A23)

On the other hand, from Eq.(A1), Eq.(A13), and
Eq.(A14), we have

ρ̂(xB; t) =

∫ ∞

−∞
dpB ψ0(pB)ρ̃

HT
W (xB, pB; t) = ρ̃0(xB; t)

(A24)

Therefore, Eq.(A23) is equivalent to Eq.(33). We
have thus completed the standard Fokker–Planck–
Smoluchowski approach [22] to the construction of the
extended Zusman equation. Apparently, the novel
method of construction, on the basis of Eqs.(27)–(29)
that result in the rules of diffusion mapping, Eq.(30)
and Eq.(31), is much simpler and physically more ap-
pealing.
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