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A Possible Form of NNS Distribution for Degenerate Spectra
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To expose the statistical properties of the degenerated spectrum, with the aid of the random matrix theory,
a possible form of the NNS distribution function of the degenerate spectrum was proposed by providing a
solution in terms of the same-degeneracy case. The results indicate that the target spectrum is transformed
into two sub-spectra: a random one and a regular one, and that the repulsion level of the regular spectrum
is also decreased.
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I. INTRODUCTION

Since the foundation of the random matrix theory
(RMT) in the 1960s, the basic research work about level
fluctuation spectra has made rapid progress [1-14]. As
a result of this work, a series of statistical theories and
the corresponding models of level fluctuation have been
established. In addition, the focus of research has ex-
panded from nuclear to atomic and molecular systems,
and from observed spectra to eigenvalue spectra. Fur-
thermore, the close relationship between quantum chaos
and the statistical regularities of the fluctuation spec-
tra has further greatly promoted the research on level
statistics for various quantum systems such as a nu-
cleus, an atom, a molecule, and even quantum dots. To
date, these theories have been limited to non-degenerate
spectra, with little focus on degenerate ones. In the case
of a degenerate spectrum, the original nearest neighbor
spacing (NNS) distribution theory for non-degenerate
spectra had a breakdown because of both the degener-
acy and the NNS distribution. Meanwhile, the statisti-
cal analysis complicated by the complex interlacing of
degeneracy and the strength in the spectral lines, and
it is particularly difficult to study. These are the chal-
lenges we seek to solve, i.e. how to extract an intrin-
sic concept of the distribution which not only reflects
the dual characteristics of the degenerate spectra, but
also directly relates to the non-integrality of the cor-
responding dynamic systems. Based on this intrinsic
approach we can establish a NNS distribution for de-
generate spectra as an extension to the theoretical for-
malism of the original NNS distribution and an enrich-
ment of the quantum chaos theory. It appears that the
development of the statistical theory of fluctuations in
degenerate spectra will enable further research on level
statistics and will help to penetrate the complex struc-
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ture of various quantum systems. Therefore, whether
theoretical or empirical, discoveries and research of this
kind of extension and development is of great necessity.

Fortunately, with the aid of the weighted statistical
method, a few interesting results about the degenerate
spectra were obtained [14]. However, the analytical ex-
pression for degenerate spectra is still unknown. Using
the framework of RMT, a possible form of the NNS dis-
tribution function for degenerate spectra is proposed in
this work.

II. THEORY

Usually a spectrum can be separated, in a general
sense, into a smoothly varying average part and a fluc-
tuating part describing the deviations from the average.
The statistical analysis then concentrates on the fluc-
tuating part. It is known that complex systems exhibit
universal fluctuation properties. Two types are par-
ticularly important: Poisson law which describes the
uncorrelated random level spectra (Poisson spectrum),
and Wigner law describing the Gaussian orthogonal en-
semble of the random matrix spectra. The NNS distri-
bution functions for these are given as

P (s) =

{
e−s (Poisson)
π
2 s exp

(
−πs2

4

)
(Wigner) (1)

Through level repulsion, both the Poisson distribution
and the Wigner one can be derived from a simple prob-
ability argument, which results in an integral equation
for the distribution P (s),

P (s) = r(s)
∫ ∞

s

P (x)dx (2)

The Poisson law follows if the level repulsion func-
tion r(s) is unity (no level repulsion), whereas the
Wigner’s follows from the assumption of linear repul-
sion as r(s) ∝ s. Therefore the level repulsion function
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is a very important factor in describing the statistical
properties of a level spectrum.

All these are valid for the non-degenerate spectra.
In fact, theoretical studying on the degenerate spec-
tra have already to be reported. However, the statis-
tical properties of a degenerate spectrum can be easily
obtained through the weighted statistical method, and
we have made some progress in the study of degener-
ate spectra recently [14]. For a numerical studying, as
opposed to the relationship between the degeneracies
and symmetries of the system, we pay attention to the
analysis of the data of the energy levels obtained from
experimental measurements or numerical calculations.
Considering a given degenerate spectrum

{ei, gi} (i = 1, 2, · · · , n) (3)

where ei is ith energy level of Eq.(3), and gi the corre-
sponding level’s degeneracy (

∑
gi = N , N is the total

number of levels). We know that levels in Eq.(3) are
correlated, and the correlations among them come from
three factors: (a) relations among the degenerate levels,
(b) relations among the non-degenerate levels, and (c)
relations between degenerate and non-degenerate levels.
It is easy to find that the neighbor spacings between
degenerate levels are 0, and that the level repulsions
among them are also 0, so these degenerate levels make
up of a sub-spectrum of Eq.(3). Obviously, this is a
random spectrum. The other two correlations (b) and
(c) constitute another sub-spectrum of Eq.(3)

{ei} , {gi} (i = 1, 2, · · · , n) (4)

which is called the regular spectrum of Eq.(3). As the
random spectrum follows Poisson’s law, it cannot re-
veal the special characteristics of the system considered.
Therefore, to get more information about the system,
further investigations on Eq.(4) are needed. For sim-
plicity, if only the correlation (b) is considered, Eq.(4)
reduces to a non degenerate spectrum

{ei} (i = 1, 2, · · · , n) (5)

Obviously, Eq.(5) is the reduced non-degenerate spec-
trum of Eq.(4). We believe that there must be some re-
lationship between Eq.(4) and Eq.(5). As a non degen-
erate spectrum, the statistical characteristics of Eq.(5)
are easy to get. Considering the degeneracy as the
level’s weight, the statistical character of Eq.(4) can also
be analyzed through the weighted statistical method
[14]. The relations between Eq.(4) and Eq.(5) can then
be exposed in this way. However, in this work, we
try to study these relations through RMT, and com-
pare the results obtained through RMT with the results
determined through the weighted statistical method.
So, we briefly review the weighted statistical method.
Then, in the framework of RMT, a possible form of the
NNS distribution function for the degenerate spectrum
is proposed. The correctness of this NNS distribution
function will be tested against the weighted statistical
method.

A. Weighted statistical method for degenerate spectrum

Considering the regular spectrum of Eq.(4), the cu-
mulative function is

Nd(ei) =
n∑

i=1

giΘ(e− ei) (6)

here Θ (x) =
{

0 (x ≤ 0)
1 (x > 0) is the unit step function. If

we suppose that the fitting polynomial function

Nd
′(ei) = b +

m∑

j=1

ajei
j (7)

can be taken as the average part of Nd(ei), then the
fluctuation part is

εi = Nd(ei)−Nd
′(ei) (8)

and the degenerate fluctuation spectrum of Eq.(4) is

{εi} , {gi} (i = 1, 2, · · · , n) (9)

The covariance between Eq.(6) and Eq.(7) is

Q =
n∑

i=1

gi[Nd(ei)−Nd
′(ei)]

=
n∑

i=1

gi

[
Nd(ei)− b−

m∑

j=1

ajei
j
]

(10)

and the coefficients b and aj (where j = 1, 2, · · · ,m)
are determined through

∂Q

∂b
= 0,

∂Q

∂aj
= 0 (j = 1, 2, · · · ,m) (11)

and m is determined by the fitting precision.
Usually NNS distribution, spectral rigidity, fractal di-

mension (FD) function, etc., are used to describe the
statistical properties of a spectrum. The NNS distribu-
tion is simply the probability P (s) of finding a separa-
tion s between neighbor levels in the fluctuation spec-
trum. Obviously, the number of s = 0 among the ith
levels ei is gi − 1 due to the degeneracy, therefore the

total number of zero spacing is
n∑

i=1

(gi− 1) = N −n and

the probability of finding a zero spacing is (N − n)/N .
On the other hand, the probability of finding a non zero
space s 6= 0 is

P (s) = lim
∆s→0

n−1∑
i=1

θ||εi+1 − εi| − si| −∆s)gi

N∆s
(12)

If the accumulative function

N(ε) =
n∑

i=1

giΘ(ε− εi) (13)
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of the fluctuation spectrum of Eq.(9) is divided into
M sub-stretches by the unit of length L, the spectral
rigidity is the average of the least-square deviation of
the accumulative function in each sub-stretch, i.e.,

∆3(L) =
1
M

M∑

i=1

1
L

{
min

Aj ,Bj

∑
nj

[N(εj)−Ajεj −Bj ]
}

(14)
where the coefficients Aj and Bj are determined
through the linear fitting. The FD function for energy
levels was introduced by Cederbaum et al. [9]. They
firstly mapped the spectrum into a set of n points in the
interval [0;1]. Each point is covered by a bar of length δ
with δ/2 on each side of the point. Once δ exceeds the
smallest distance between two points, the bars overlap
and the coarse graining is done by the union of the over-
lapping bars being now of lengths li, i = 1, 2, · · · ,m.
Then the fractal dimensional function for energy levels
is

D =

m∑
i=1

PilnPi

m∑
i=1

Pilnli

(15)

where Pi is the probability that a point falls into the
line of coarse li and can be calculated as

Pi =

k(li)∑
j=1

gk(j,li)

N
(16)

where k(li) is the number of points consisting of the
coarse graining li, k(j, li) the serial number of level cor-
responding to the jth point in li.

Through Eqs.(12)-(15), we can determined the statis-
tical characteristics of the regular spectrum of Eq.(4), a
sub-spectrum of Eq.(3). However, the analytical expres-
sion for the NNS distribution function, spectral rigidity
and the FD function are still unknown. In the following
pages, we try to give a possible form of the NNS distri-
bution function for the regular spectrum of a degenerate
spectrum.

B. A possible form of NNS distribution function for
degenerate spectrum in the framework of RMT

We note that RMT is no longer valid for the degener-
ate spectra. According to RMT, the invariant volume
element of a N×N random Hamiltonian matrix H is
defined by [1]

dVH = 2N(N−1)/4dh11 · · ·dhN−1,N (17)

where dh11, · · · , dhN−1,N are the elements of dH, while
dH corresponds to the differential increment of H, i.e.

dH =




dh11 dh12 · · · dh1N

dh21 dh22 · · · dh2N

...
...

. . .
...

dhN1 dhN2 · · · dhNN


 (18)

For real symmetric Hamiltonian matrixes, i.e. Gaussian
orthogonal ensembles (GOE), dVH will take the form [1]

dV GOE
H = 2N(N−1)/4f

(
α1, · · · , αN(N−1)/2

)

·
{ N∏

i<j=1

|ej − ei|
}

de1 · · ·deNdα1 · · ·dαN(N−1) (19)

whereas for Gaussian unitary ensemble (GUE), dVH

shifts to

dV GUE
H = 2N(N−1)/4f

(
α1, · · · , αN(N−1)/2

)

·
{ N∏

i<j=1

|ej − ei|2
}

de1 · · ·deNdα1 · · ·dαN(N−1)(20)

where ei represents the eigenvalues of H, f(α1, · · · ,
αN(N−1)/2) appears as a function of the parameters
αi involved in the corresponding orthogonal matrix O,

while
N∏

i<j=1

|ej − ei| and
N∏

i<j=1

|ej − ei|2 are the weight

factors of GOE and GUE respectively. Evidently, when
ei=ej , both dV GOE

H and dV GUE
H will tend to be trivial,

which leads to the inevitable singularity of the statis-
tical distribution for degenerate spectra. However, we
can’t exclude the possibility of degeneracy because dy-
namic symmetry very likely exists in any quantum sys-
tem, so we have to extend the original statistical theory
to include the case of degeneracy. The only way to do
this is to revise the above formulas, the foundation of
the theory as well as the deductions made from it.

For a symmetric matrix, whether its eigenvalues are
degenerate or not, there must exist an orthogonal trans-
formation to make it diagonal. If degeneracy appears,
the number of independent matrix elements will de-
crease and both the Jacobi determinant of the orthog-
onal transformation and the invariant volume element
of the matrix will change. Take the GOE type as an
example. We can write out a 2 × 2 symmetric matrix
H and its corresponding orthogonal matrix O as well
as the final diagonal matrix HD as follows [1]

H =
[

h11 h12

h12 h22

]

HD =
[

e1 0
0 e2

]
(21)

O =
[

cos α sinα
− sinα cos α

]
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After taking the orthogonal transformation [1], we have
the matrix elements as

h11 = e1 cos2 α + e2 sin2 α

h12 = (e2 − e1) cos α sinα (22)
h22 = e1 sin2 α + e2 cos2 α

and the invariant volume element as

dh11dh12dh22 = J

(
h11 h12 h22

e1 e2 α

)
de1de2dα (23)

in which
∣∣∣∣
∂h11

∂e1

∂h11

∂e2

∂h11

∂α

∣∣∣∣

J

(
h11 h12 h22

e1 e2 α

)
=

∣∣∣∣
∂h12

∂e1

∂h12

∂e2

∂h12

∂α

∣∣∣∣ (24)
∣∣∣∣
∂h22

∂e1

∂h22

∂e2

∂h22

∂α

∣∣∣∣

From Eq.(22), it’s evident that when e1=e2, i.e. e1 and
e2 are degenerate, h12 vanishes. As a result, in addition
to the decrease of the number of the independent matrix
elements, the Jacobi determinant J of this transforma-
tion is no longer trivial because of the disappearance of
the |e1 − e2| item.

To obtain a possible expression for the NNS distribu-
tion of degenerate spectra, we assume that a diagonal-
ized matrix with degenerate eigenvalues can be written
as

∣∣∣∣∣∣∣∣∣

e1I1 0 · · · 0
0 e2I2 · · · 0
...

...
. . .

...
0 0 · · · enIn

∣∣∣∣∣∣∣∣∣
(25)

where Ii is the gi-dimensional unit matrix, gi is the
degeneracy of eigenvalue ei. Obviously, the diagonalized
matrix of its reduced nondegenerate spectrum is

∣∣∣∣∣∣∣∣∣

e1 0 · · · 0
0 e2 · · · 0
...

...
. . .

...
0 0 · · · en

∣∣∣∣∣∣∣∣∣
(26)

We also assume that if P (H) is the probability distribu-
tion function of the eigenvalue spectrum corresponding
to the Hamiltonian matrix H, then the information of
this matrix will be in the form of

I =
∫

dVHP (H) lnP (H) (27)

It is subject to the following two constraining conditions
[1]

∫
dVH(TrHH+)P (H) = C (28)

∫
dVHP (H) = 1 (29)

where C is a constant. According to the maximum in-
formation principle, the distribution function P (H) can
be finally deduced to be

P (H) = exp{−(1 + λ0 + λ1Tr[(HH+)]} (30)

where λ0 and λ1 are the Lagrange multipliers. Intro-
ducing the scaling transformation xi =

√
2λ1ei, for the

regular part, the above formula shifts to

P1 (x1, · · · , xn) = Cng

N∏

i<j=1

|ej − ei|q

· exp
[
−1

2

∑
gi

2xi
2

]
(31)

for its reduced non-degenerate part, it’s

P2 (x1, · · · , xn) = Cn

N∏

i<j=1

|ej − ei|q exp
[
−1

2

∑
xi

2

]

(32)
When q=1, it is the GOE type; while when q=2, it is
the GUE type. For simplification, we consider a matrix
only having two different eigenvalues e1 and e2 with de-
generacies g1 and g2 respectively. Examining Eqs.(31)
and (32), we conclude that the probability of the eigen-
value pair being in the intervals e2 → e2 + de2 and
e1 → e1 + de1:

P1 (e1, e2) de1
g1de2

g2 = C2g |ej − ei|q

· exp
[
−1

2
(
g1

2e1
2 + g2

2e2
2
)]

(de1)
g1 (de2)

g2 (33)

P2 (e1, e2) de1de2 = C2 |ej − ei|q

· exp
[
−1

2
(
e1

2 + e2
2
)]

de1de2 (34)

They satisfy the normalization condition
∫ ∫

(de1)
g1 (de2)

g2 P1 (e1, e2) = 1 (35)
∫ ∫

de1de2P2 (e1, e2) = 1 (36)

respectively. Obviously, in this theoretical formalism,
it is very difficult to determine the general solution for
P (s). However, we deal with the following special case
in an attempt to propose a possible form of NNS dis-
tribution for degenerate spectra. As a special case, we
assume g1 = g2 = g, i.e. the different eigenvalues of the
matrix have the same degeneracy. After taking advan-
tage of the following transformation

e =
1
2

(e1 + e2) , s = |e1 − e2| (37)
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Eqs.(33) and (34) turn into

P1(s, e)dsgdēg ∝

C2gs
q exp

(
−4ē2 + g2s2

8α2

)
(ds)g(dē)g (38)

P2(s, ē)dsde ∝ C2s
q exp

(
−4e2 + s2

8α2

)
dsde (39)

Integrating over the variable e (i.e. the average energy),
we have the realization probability of the spacing s in
the interval s → s + ds

P1(s)ds = C ′2gs
q/g exp

(
− gs2

8α2

)
ds (40)

P2(s)ds = C ′2s
q exp

(
− s2

8α2

)
ds (41)

It’s easy to extend the above conclusion to the GOE
type having n different eigenvalues but the same de-
generacy g, and the corresponding probability function
yields

P1 (s) = C ′ngs
q/g exp

(
− gs2

8α2

)
(42)

P2 (s) = C ′nsq exp
(
− s2

8α2

)
(43)

For the degenerate spectra with different degeneracies,
we try to briefly demonstrate its character through its
average degeneracy, since in general according to the
idea of RMT, except for the symmetry of the matrix.
The matrix elements are allowed to change randomly,
for any degenerate spectrum, and every eigenvalue is
likely to experience degeneracy. If the probability of
eigenvalues encountering degeneracy is presumed to be
the same for each energy level, the degeneracy of every
eigenvalue can be evaluated over the degeneracy ensem-
ble {gi} and then the average degeneracy of eigenvalue
ei is

gei
=

∑
gi

n
=

N

n
(44)

Evidently, all of the eigenvalues of the random matrix
have the same average degeneracy g ≡ g = gei

. There-
fore, we can use the conclusion of Eq.(42) of the equal-
degeneracy case to describe the general degenerate spec-
tra briefly, and thus

P (s) = Csq/g exp
(
− gs2

8α2

)

= Csnq/N exp
(
− ns2

8Nα2

)
(45)

Additionally, taking into account the random spectra of
the degeneracy case characterized by s = 0 with relative
ratio (N−n)/N , we finally obtain the complete form of

the NNS distribution for degenerate spectra as follows:

P (s) =

{
N−n

N (s = 0)
n
N Cs

n
N q exp

(
− ns2

8Nα2

)
(s 6= 0) (46)

All the coefficients C, C2, C2g, Cn, Cng, C
′
2, C

′
2g, C

′
n

and C
′
ng are used to normalize the distribution func-

tion. Even though this expression is derived in terms of
the special case, it is enormously useful that it exposes
physical insights required for the degenerate spectra.
The expression shows the whole set of degenerate spec-
tra can be decomposed into two parts: when s = 0,
P (s) describes the random spectrum; when s 6= 0, the
regular spectrum. When compared with Eqs.(42) and
(43), it’s easy to see that, for the reduced non degener-
ate spectrum, the level repulsion is sq, for the regular
part of the degenerate spectrum, it is s(n/N)q, i.e., the
level repulsion of the regular part is smaller than its
reduced part. Clearly, this result is interesting.

III. RESULTS

The statistical characteristcs is calculated by the
quantum self-trapped theory [15-17]. In the spectrum,
the two levels are taken to be degenerate when their
interval is smaller than 1 cm−1. When doing so, it
was found that the average degeneracy of H2O was
1.4. The statistical characteristics of the regular spec-
trum and its reduced non-degenerate spectrum of the
vibrational energy levels of H2O, are obtained through
weighted statistical method, and demonstrated in Fig.1-
Fig.4, respectively. From Fig.1 and Fig.2, few obvious
differences are found in the NNS distributions between
the regular spectrum and its reduced non degenerate
spectrum; however, Fig.3 and Fig.4 show clearly that
both the spectral rigidity and FD function of the regu-
lar part fall closer to the Poisson law than the reduced
non degenerate spectrum does. This means that the
level repulsion of the regular spectrum is smaller than

FIG. 1 The NNS distribution of the regular spectrum of the
vibrational energy levels of H2O.
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FIG. 2 The NNS distribution of the reduced non-degenerate
spectrum of the vibrational energy levels of H2O.

FIG. 3 The spectral rigidity, where ∆3 is the spectral rigid-
ity, L the length of the measured unit. The curves consists
of “×” or “ ◦” are for the regular spectrum or the reduced
non-degenerate spectrum of the vibrational energy levels of
H2O respectively.

FIG. 4 The FD function, where D is the FD function, δ/s̄
the ratio of the measured length δ to the average value s̄ of
levels. The curves consists of “×” or “◦” are for the regular
spectrum or the reduced non-degenerate spectrum of the
vibrational energy levels of H2O respectively.

that of the reduced reduced non degenerate spectrum,
since the level repulsion of a random spectrum which

follows the Poisson law is 0, and the closer to Poisson
law, the smaller the level repulsion will be. This is just
in accordance with above conclusion derived from RMT.
There is no doubt that the difference between s(n/N)q

and sq is very small if n/N will near to 1. Therefore,
we see that the results derived from the RMT theory
through a very special case expose the physical insights
of the degenerate spectra in a way.

IV. CONCLUSION

By considering the same-degeneracy special case, we
explicitly obtain a possible form of the NNS distribu-
tion for degenerate spectra. Our result shows that the
degenerate spectrum is actually composed of two sub-
spectrum, the random spectrum and regular spectrum,
according to the ratios (N−n)/N and n/N . In addition,
it turns out that the level repulsion of the regular spec-
trum is smaller than that of the reduced non-degenerate
spectrum because of degeneracy.
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