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A new 2-D variational method is proposed to calculate the vibrational energy levels of the
symmetric P-H stretching vibration (v1) and the symmetric umbrella vibration (inversion
vibration) (v2) of PH3

+(X̃2A′′2) that has the tunneling effect. Because the symmetric internal
Cartesian coordinates were employed in the calculations, the kinetic energy operator is very
simple and the inversion vibrational mode is well characterized. In comparison with the
often used 1-D model to calculate the inversion vibrational energy levels, this 2-D method
does not require an assumption of reduced mass, and the interactions between the v1 and v2

vibrational modes are taken into consideration. The calculated vibrational energy levels of
PH3

+ are the first reported 2-D calculation, and the average deviation to the experimental
data is less than 3 cm−1 for the first seven inversion vibrational energy levels. This method
has also been applied to calculate the vibrational energy levels of NH3. The application to
NH3 is less successful, which shows some limitations of the method compared with a full
dimension computation.
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I. INTRODUCTION

The theoretical calculations about the inversion vi-
brational energy levels of NH3 have attracted great at-
tentions because it can be regarded as a benchmark
for the study of tunneling effect in molecules and also
due to its importance in interstellar environments [1,
2]. Various ab initio and model calculation methods
have been developed. S̆pirko et al. had performed cal-
culations using a non-rigid vibration-inversion-rotation
Hamiltonian [3, 4]. Theoretical calculations consider-
ing all six vibrational degrees (6-D) with accurate po-
tential energy surfaces (PESs) have been performed [1,
2, 5−10]. For example, a state-of-the-art calculation
with refined ab initio PES provided vibrational energy
levels as accurate as 0.02 cm−1 in comparison with the
experimental data [5]. On the other hand, simple 1-D
models that calculate the vibrational energies for the
symmetric umbrella or inversion vibrational mode (v2)
have also been studied to obtain physical understand-
ing about the inversion vibration [11−14]. In 1-D cal-
culations, the potential energy curves for the inversion
vibration were calculated with the assumption of fixed
N−H bond lengths or three H atoms moving along the
minimum energy path. An assumption about the re-
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duced mass has to be made usually in this case. For
example, Halpern et al. did intrinsic reaction coordi-
nate calculation on NH3 [11]. The 1-D model is use-
ful for understanding the physics of inversion vibration;
however, it can only provide quantitative results for low
tunneling states.

In addition to the symmetric inversion vibrational
mode (v2), NH3 has another symmetric vibrational
mode: the N−H stretching vibration. If the interactions
between the symmetric vibrational modes and degener-
ate modes (including degenerate N−H stretching (v3),
and N−H deform (v4)) are neglected, the symmetric vi-
brational energy levels can be determined using a 2-D
model. In contrast with the 1-D models, this 2-D model
does not require an assumption of reduced mass about
the inversion vibration; even the mode coupling between
the two symmetric vibrations are accounted. Therefore,
the 2-D model is expected to be able to provide better
quantitative results than the 1-D model. Pesonen et al.
performed such a 2-D calculation on NH3 using sym-
metric internal coordinates expressed by bond angles
and bond lengths [15]. The expression for the kinetic
energy in the Hamiltonian has complicated mathemat-
ical expressions.

Despite a large amount of theoretical works on NH3,
few computations have been performed on PH3

+. This
might be partly due to a lack of high quality experi-
mental data. It was true, until Yang et al. reported a
rotationally-resolved spectroscopic study on PH3

+ [16].
Marynick reported the first 1-D calculation on PH3

+
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FIG. 1 The reference geometry for NH3 or PH3
+ molecule.

The molecule is inside the X-Y plane and has D3h symmetry.
The H1 atom is located on the X-axis. The N or P atom is
at the origin. Attached to each H atom is a local coordinate
that parallels to the space-fixed XY Z coordinate system.

based on a SCI-CI potential energy curve [17]. Maripuu
et al. performed 1-D calculation based on CASSCF po-
tential energy curve, and their theoretical results were
compared with their photoelectron spectrum, in which
no inversion vibrational energy level splitting was ob-
served [18]. Yang et al. also did their own calculation
with 1-D model [16].

In this work, we will use the symmetric internal co-
ordinates expressed by Cartesian coordinates, and the
Hamiltonian is therefore in a very simple form. The
PES was calculated using the MOLPRO software pack-
age at the CCSD(T)-F12A/cc-pCVTZ-F12 level [19].
The harmonic functions were used in the variational cal-
culations. The numerical integration method was used
to obtain the matrix elements. We have applied this
method to calculate the vibrational energy levels for the
two symmetric vibrational modes of NH3 and PH3

+.

II. THEORETICAL METHOD

A. Symmetric internal Cartesian coordinates relating to
the inversion vibration and P−H stretching vibration

We will introduce the symmetric internal coordinates
Q1 and Q2. We first adopt the mass-weighted Cartesian
coordinates

√
mPx1=X1,

√
mPy1=Y1,

√
mPz1=Z1,√

mHxi=Xi,
√

mHyi=Yi,
√

mHzi=Zi,(i=2, 3, 4) where
mP is the mass of the P atom and mH is the mass of
the H atom; xi, yi, zi are displacements of the P and
H atoms with respect to their reference geometry. For
the discussion on NH3, we just replace the subscript P
with N.

The reference molecular geometry is shown in Fig.1,
together with its local coordinates used to define the
displacement vectors. The P and three H atoms are
inside the X-Y plane. The P atom is located at the
center of the equilateral triangle with H atoms sitting
on the vertices.

For a nonlinear molecule, there are three rotational
and three translational normal coordinates with zero

frequencies. For D3h symmetric molecules the sym-
metries for three translational normal coordinates are
A′′2(Tz) and E′(Tx, Ty), and for rotational motion the
symmetries for the three normal coordinates are A′2(Rz)
and E′′(Rx, Ry) [20]. The vibration modes with sym-
metry A′′2 (inversion vibration) may be contaminated
by translational motion A′′2(Tz). While for vibrational
mode of A′1 symmetry (P−H stretching vibration), only
internal motion is possible. Since C3v group is a sub-
group of D3h group, A′1 and A′′2 representations in D3h

group correlate with A1 representation in C3v group
[20].

The symmetric coordinate relating to the inversion
vibration is

Q2 (A′′2) = αZ1 + β (Z2 + Z3 + Z4) (1)

where α and β are constants. As we mentioned, the
translational motion along the Z-axis has the same sym-
metry as Q2(A′′2). It is thus required that the normal
coordinates should be orthogonal to the translational
motion Tz(A′′2). The symmetric coordinate describing
the translational motion along the Z-axis is

Tz (A′′2) =
√

mPZ1 +
√

mH (Z2 + Z3 + Z4) (2)

Because the two vectors Q2(A′′2) and Tz(A′′2) should be
orthogonal to each other, the ratio β/α is thus easily
determined as −

√
mP/mH/3, Eq.(1) is hence written

as:

Q2 (A′′2) =

√
3

(mP + 3mH)

[√
mHZ1 −

√
mP

3
(Z2 + Z3 + Z4)

]
(3)

where a normalization factor is included. The symmet-
ric stretching coordinate Q1(A′1) can be determined us-
ing the symmetry projection operator PA′1 starting with
the displacement vector X2 that corresponds to bond
stretching for H atom with index 1, we obtain

Q1 (A′1) =

√
1
3
X2 −

√
1
12

X3 +

√
1
4
Y3 −

√
1
12

X4 −
√

1
4
Y4 (4)

Therefore, the symmetric coordinates expressed by
Eqs.(3) and (4) exclude the translational and rota-
tional motion of the molecule. The coordinates Q2(A′′2)
and Q1(A′1) are the internal symmetric coordinates ex-
pressed by Cartesian coordinates.

It is noted that in C3v symmetry the normal coordi-
nates of A1 symmetry should be a mixture of Q1 and
Q2. For example at the equilibrium geometry, the hy-
drogen atoms move perpendicular to their bonds in the
inversion mode, whereas move parallel to their bonds
in the symmetric stretching mode, both of which can
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be described as linear combinations of the Q1 and Q2

defined above. At the planar geometry, the inversion
mode is described by Q2 and the symmetric stretching
mode is described by Q1. This means that the linear
combination coefficients of Q1 and Q2 that are used to
describe the two modes can vary long the inversion vi-
bration path, so it is convenient to include Q1 and Q2

simultaneously.

B. Hamiltonian

The Hamiltonian is

Ĥ = T̂ + V0 (Q1, Q2) = H0 + V (Q1, Q2) (5)

Based on the mass-weighted Cartesian coordinates, the
kinetic energy operator is written as

T̂ = −1
2

(
∂2

∂2Q1
2 +

∂2

∂2Q2
2

)
(6)

The harmonic part of the potential energy is formally
combined with the kinetic energy

H0 = −1
2

(
∂2

∂Q1
2 +

∂2

∂Q2
2

)
+

1
2
Q1

2 +
1
2
Q2

2 (7)

V (Q1, Q2) = V0 (r, α)− 1
2
Q1

2 − 1
2
Q2

2 (8)

As a result H0 is diagonal when using harmonic function
basis. Although the function for a double-well potential
is not a harmonic function, this mathematical manipu-
lation allows us to treat kinetic energy easily. In Eq.(8),
r is the P−H bond length and α is the angle between
the P−H bonds and a media plane that goes through P
and perpendicular to the C3v axis [21]. For each (Q1,
Q2) there is a corresponding (r, α).

C. Basis functions

The variational method is used to solve Eq.(5). The
wavefunction is expanded by the following basis func-
tions:

Ψn1n2 (Q1, Q2) =
(ω1ω2

~2

)1/4

ϕn1

(√
ω1

~
Q1

)
·

ϕn2

(√
ω2

~
Q2

)
(9)

where ϕn(Q) is the eigenfunction of harmonic Hamilto-
nian, defined as follows

(
−1

2
∂2

∂Q2
+

1
2
Q2

)
ϕn (Q) =

(
n +

1
2

)
ϕn (Q) (10)

In the calculation, ω1=2462 cm−1 and ω2=583 cm−1

for PH3
+, and ω1=3336 cm−1 and ω2=932 cm−1 for

NH3 [2, 16]. It is noted that the choice for the values
of ω1 and ω2 is found to be inconsequential when the
eigenvalues are converged.

The inversion vibrational mode v2 can be classified
as + or −, according to the reflection symmetry of its
vibrational wavefunction. The +/− indicates that the
wavefunction is a combination of Ψn1n2(Q1, Q2) with
n2 being even/odd numbers.

We used 12 and 25 basis functions for the v1 and v2

modes, respectively, which resulted in a Hamiltonian
matrix of 300 dimensions. The LAPACK library was
employed to solve the eigenvalue problem.

III. CALCULATION OF POTENTIAL ENERGY
SURFACES

The 2-D PESs of NH3 and PH3
+ have been generated

using the MOLPRO quantum chemistry software pack-
age at the CCSD(T)-F12A/cc-pCVTZ-F12 level. This
computation approach represents a low cost and accu-
rate technique for the generation of the PES [19, 22, 23].
The cc-pCVTZ-F12 [24] basis set was used to describe
the N or P atom, and the cc-pVTZ-F12 [25] was used
for the H atoms, and the basis sets are similar to the
standard aug-cc-pVTZ basis sets. Using aug-cc-pVTZ
basis sets the CCSD(T)-F12 calculations are more accu-
rate than standard CCSD(T)/aug-cc-pV5Z calculations
[22]. The calculations were performed using C2v sym-
metry because only Abelian point group symmetry is
available by MOLPRO.

Total 2160 points were sampled for the PES of NH3.
The bond lengths r range from 0.8125 Å to 1.2825 Å
with a step 0.010 Å, and the angles α range from 0 to
48.84◦ with a step 1.11◦. While for PH3

+, 2116 points
were sampled. The bond lengths range from 1.1476 Å to
1.7101 Å with a step of 0.0125 Å, and the angles range
from 0◦ to 46.35◦ with a step of 1.03◦. The potential
energies for points (r, α) inside the above-mentioned
rectangular region but between the grids were deter-
mined by using the three-point Lagrange interpolation
method, while outside the region V (Q1, Q2) was set
to zero. We denote α1, α2, α3 as the three nearest
points to α and r1, r2, r3 as the three nearest points
to r. The potential energies at (ri, αj), i, j=1, 2, 3
are calculated by MOLPRO software. Firstly, V0(ri, α)
is determined by interpolating points V0(ri, α1), V0(ri,
α2), and V0(ri, α3), with i=1, 2, 3, respectively. Then
we determine V0(r, α) by interpolating points V0(r1, α),
V0(r2, α), and V0(r3, α).

IV. RESULTS AND DISCUSSION

The minimum energy (or the equilibrium) geome-
try structure of NH3 and PH3

+ are shown in Table I.
Table I also lists one of the reported geometric param-
eters for comparison. It is seen that our results are
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FIG. 2 Cuts of potential energy surface (PESs) of NH3 and PH3
+ showing the inversion vibration. The calculated vibrational

energy levels are also indicated in the figure. The PESs were calculated at the CCSD(T)-F12A/cc-pCVTZ-F12 level. (a)
The abscissa is the distance between the N atom and the plane containing the three H atoms. The N−H bond lengths are
kept at their equilibrium values. The barrier height is 2016.9 cm−1. If the bond lengths are optimized, the barrier height is
1855.5 cm−1. (b) The abscissa is the distance between the P atom and the plane containing the three H atoms. The P−H
bond lengths are kept at their equilibrium values. The barrier height is 1053.3 cm−1. If the bond lengths are optimized, the
barrier height is 1047.0 cm−1.
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FIG. 3 Two-dimensional contour plot of the PES of (a) NH3 and (b) PH3
+. The r is the (a) N−H or (b) P−H bond length,

and h is the distances between (a) N or (b) P atom and the plane containing the three H atoms. The molecule is fixed at
C3v geometry. The isolevel spacing is 500 cm−1.

TABLE I The equilibrium geometry of NH3 and PH3
+ in

C3v symmetry∗.

r/Å β/(◦) r′/Å β′/(◦)

This work 1.012 106.7 1.398 113.2

Reference 1.011 [5] 106.7 [5] 1.395 [16] 112.8 [16]
∗ r and r′ are bond lengths for NH3 and PH3

+,
respectively. β and β′ are the bond angle between the two
neighboring N−H and P−H bonds, respectively.

generally in agreement with the previous results.
Figure 2 shows cuts of PESs relating to the inversion

vibrations of NH3 and PH3
+, respectively. The bond

lengths are fixed to their equilibrium structures. The
barrier heights are 2016.9 and 1053.3 cm−1 for NH3

and PH3
+, respectively. If the bond lengths are opti-

mized, the barrier heights are 1855.5 and 1047.0 cm−1

for NH3 and PH3
+, respectively. The calculated bar-

rier height for NH3 is considerably higher than the value
1784.66 cm−1 reported by Huang et al. [5].

Figure 3 show the 2D contour plots of the PESs of
NH3 and PH3

+, respectively. The molecules are fixed
at C3v geometry. The x, y coordinates are the bond
lengths r and the distance h between N(P) atom and
plane containing the three H atoms, respectively. The
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TABLE II Calculated and experimental inversion and
stretching vibrational energy levels for NH3. The potential
energy surface [15] were calculated at the CCSD(T)/aug-
cc-pvQZ level, which and this work both used 2-D models
to describe vibrations and similar levels of theory, so the
calculated results are similar. The difference between calcu-
lated and experimental results may result from the absence
of degenerate stretching and degenerate deform modes in
the Hamiltonian.

v1 v2 Energy/cm−1

This work Ref.[15] Exp. [8, 9]

0 0+ 0 0.0 0

0 0− 1.04 0.96 0.79

0 1+ 915.7 922.92 932.4

0 1− 960.1 964.74 968.1

0 2+ 1565.6 1577.97 1597.5

0 2− 1876.5 1882.32 1882.2

0 3+ 2382.3 2387.96 2384.2

0 3− 2906.2 2909.76 2895.5

0 4+ 3483.4 3485.55 3462

0 4− 4093.4 4093.93 4055

1 0+ 3430.5 3336.1

1 0− 3432.2 3337.1

1 1+ 4379.6 4294.5

1 1− 4409.6 4320.0

shape of NH3 contour is oblique, which indicates a
stronger interaction between the inversion and stretch-
ing vibrations in NH3 than that in PH3

+. These inter-
actions are taken into account in our 2-D model.

The calculated vibrational energy levels along with
the reported experimental data are listed in Tables II
and III for NH3 and PH3

+, respectively. For NH3, our
calculation results are less accurate than but compa-
rable to the 2-D calculation results by Pesonen et al.
[15]. The aforementioned full dimension calculations of
NH3 can almost reproduce experimental results, but we
didn’t try to emulate their results using our simple 2-D
model. For PH3

+, however, it is astonishing to see that
the calculated vibrational energy levels are in excellent
agreement with the experimental data with an average
error of 2.3 cm−1 for the first seven inversion vibrational
energy levels. This indicates that the coupling between
the symmetric and the degenerate vibrations in PH3

+

are very weak and also validates the advantages of our
2-D method in the calculation of the symmetric vibra-
tional energy levels for PH3

+. However, full dimension
calculation is imperative in order to achieve better ac-
curacy.

V. CONCLUSION

The vibrational energy levels for the two symmet-
ric vibrational modes of NH3 and PH3

+ were calcu-

TABLE III Calculated and experimental measured stretch-
ing and inversion vibrational energy levels for PH3

+. The
calculated result using the proposed 2-D model is noticeably
better than the 1-D calculation which are from Marynick at
the SCF-CI level of theory, demonstrating the viability of
the 2-D model and influence of degenerate modes to the
inversion mode is relatively weak in the case.

v1 v2 Energy/cm−1

This work Ref.[17] Exp. [16]

0 0+ 0 0 0

0 0− 5.8 6.5 5.8

0 1+ 579.8 569.2 583.3

0 1− 694.7 695.2 695.3

0 2+ 1083.2 1077.9 1085.7

0 2− 1422.7 1426.9 1422.3

0 3+ 1832.2 1839.9 1831.7

0 3− 2267.8 2280.5 2263.5

0 4+ 2731.5 2749.1 2725.2

0 4− 3218.4 3240.8 3209.1

1 0+ 2462.9 2461.6

1 0− 2468.3

1 1+ 3046.2

1 1− 3154.4

1 2+ 3543.6 3503.7

1 2− 3725.2

lated using the 2-D model based on symmetric internal
Cartesian coordinates. The Hamiltonian has a very sim-
ple form. The PESs were calculated at the CCSD(T)-
F12A/cc-pCVTZ-F12 level. Variation method was em-
ployed to solve the Hamiltonian equation, and the har-
monic functions were used in the variational calcula-
tions. The vibrational energy levels for PH3

+ are the
first reported 2-D calculations, and the average devia-
tion to the experimental data is less than 3 cm−1 for
the first seven inversion vibrational energy levels.
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