ARTICLE

Structure and Properties of Hydrotalcite Using Electrostatic Potential Energy Model

Zhe-ming Ni*, Guo-xiang Pan, Li-geng Wang, Wei-hua Yu, Cai-ping Fang, Dan Li

College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China

(Dated: Received on July 16, 2005; Accepted on November 11, 2005)

The electrostatic potential energy model of hydrotalcites was based on the theory of crystallography. The anionic potential energy of MgAl-hydrotalcites, with 20 layers and 2107 anions per layer, was calculated, and the anionic stability of the hydrotalcites was investigated. The charge density of the layer and the distance between the adjacent anions varied with the molar ratio of Al\(^{3+}\)/\((\text{Mg}^{2+}+\text{Al}^{3+})\). Anionic potential energy depended on the charge and size of the anions. Calculation results remained consistent with thermal stability and the ion exchange ability reported. This model is able to predict anionic stability of the hydrotalcites.

Key words: Hydrotalcite, Electrostatic potential energy model, Thermal stability, Ion exchange

I. INTRODUCTION

The structures of layered double hydroxides (LDHs), also known as anionic clays, consist of positively charged brucite-like layers and negatively charged anions in the interlayer space. These can be represented by the general formula: [\text{M}^{2+}_{1-x}\text{M}^{3+}_x(\text{OH})_2][(\text{A}^{n-})_{x/n}\cdot m\text{H}_2\text{O}]\), where \text{M}^{2+} and \text{M}^{3+} are di- and tri-valent metals, such as \text{Mg}^{2+}, \text{Ni}^{2+}, \text{Co}^{2+}, \text{Zn}^{2+}, \text{Al}^{3+}, \text{Cr}^{3+}, \text{Fe}^{3+}, \text{Sc}^{3+}; \text{A}^{n-} refers to an exchangeable \(n\)-valent anion, such as \text{CO}_3^{2-}, \text{NO}_3^{-}, \text{Cl}^{-}, \text{OH}^{-}, \text{SO}_4^{2-}, \text{PO}_4^{3-}\), etc., and \(x\) is equal to the molar ratio of \text{Al}^{3+}/(\text{Mg}^{2+}+\text{Al}^{3+})\). In order to satisfy the requirements of a given functional material design, the structural parameters and properties of LDHs can be modified by varying the molar ratios of \text{Al}^{3+}/(\text{Mg}^{2+}+\text{Al}^{3+})\) and anions [1-5]. The electrostatic potential energy model of hydrotalcites was initially defined according to the microstructure of LDHs. The intercalated anions and layers were considered a point charge and a charged face, respectively. The anionic electrostatic potential energy of MgAl-hydrotalcites with 20 layers and 2107 anions per layer was calculated by Coulomb’s law. In this work, the anionic stabilities of the hydrotalcites are investigated, and the effects of the molar ratios of \text{Al}^{3+}/(\text{Mg}^{2+}+\text{Al}^{3+})\) and the varieties of intercalated anions on the structure and properties of LDHs are evaluated.

II. THEORETICAL CALCULATIONS

A. Microstructure model

LDHs are similar, in structure, to brucite \text{Mg(OH)}_2 sheets. Each metal ion is octahedrally surrounded by six \text{OH}^{-}, and the different octahedra shares borders forming infinite sheets. LDHs commonly form hexagonal-shaped crystals. Therefore, for the calculations of the textural properties, a hexagonal geometry for the layers is used. Figure 1 shows a schematic top-down view of the LDHs crystallite layer with mean diameter (\(d_p\)). The location of the metallic octahedra in the LDHs layer can also be seen in Fig.1. The area of each octahedron in a LDHs layer (\(A_E\)), seen from the top, can be calculated by the formula: \(A_E = \sqrt{3}a^2/2\), where \(a\) represents the mean distance between \text{OH}^{-}\) groups, or the distance between adjacent metal ion on the same layer. \(a\) can be attained from XRD, in our case we found \(a = 2d_{110}\).

Figure 2 displays the schematic arrangement of equally spaced anions on the surface of a brucite-like layer, in a hexagonal geometry [6]. From Fig.1, we see the number of the metallic octahedral unit presented in a brucite-like layer (\(N_b\)). \(N_b\) is determined by the ratio between the area of a brucite-like layer (\(\sqrt{3}d_p^2/2\)) and the area of each octahedron in a LDHs layer (\(A_E\)).
the area of an octahedral unit \((A_E = \sqrt{3}a^2/2)\):

\[
N_b = d_p^2/a^2
\]

Assuming electroneutrality in the LDHs, the number of anions per LDHs layer \((Y_b)\) is:

\[
Y_b = N_b \cdot x/n
\]

where \(x\) is the molar ratio of \(M_3^+/\(M_2^++M_3^+\)\) and \(n\) is the charge of the intercalated anion.

In order to calculate \(d_z\), a relationship between the separation of adjacent anions \((d_z)\), the mean diameter of the LDHs layer \((d_p)\) and the number of anions per LDHs layer \((Y_b)\) was needed. For this purpose, the ratio of the area of a brucite-like layer to one third of the area of the minimum hexagonal unit cell, as given in Fig.2, was applied. This was because the quotient is the total number of anions per brucite-like layer.

\[
Y_b = \frac{\sqrt{3}d_p^2/2}{(1/3)3\sqrt{3}d_z^2/2} = \frac{d_p^2}{d_z^2}
\]

Therefore, \(d_z\) can be calculated if the geometry, the charge of anions \((n)\), the molar ratio \((x)\), and the dimension of the LDHs crystallite \((d_p)\) are known. Using Eqs.(1), (2), (3), \(d_z\) is calculated by:

\[
d_z = a\sqrt{n/x}
\]

B. Electrostatic potential energy model

Within a coherent stack of layers, the following forces significantly influence the stabilities of the anions: (i) attraction between positively charged layers and the intercalated anions; (ii) repulsion between the anions in the interlayer.

According to the structural character of LDHs, EPEM is constructed as depicted in Fig.3. The stability of the anion in the interlayer is related to its electrostatic potential energy. The lower the anionic electrostatic energy, the more stable its structure becomes.

\[
U_s = q^2/(4\pi\varepsilon r)
\]

where \(q\) is the charge of \(n\)-valent anions in the interlayer, \(\varepsilon\) is the dielectric permittivity of vacuum, \(r\) is the distance between anions.

The calculation of the parameter \(r\) was made as follows: first, according to a hexagonal arrangement of anions, a 30° area marked as black ball, given in Fig.2, is studied. The number 0 anion is the central anion; the distances between it and the other anions can be calculated by Pythagorean theorem. The anionic number located at the edge of a 30° area is counted as 1/2, and other anionic number located inside are counted as 1.

According to the general formula of LDHs: \([M_2^{2+}1-xM_3^{3+}x(OH)]_x[(A^{n-})_{x/n}\cdot mH_2O]\), the charge of an octahedra is \(xe\), thus, the positive charge density \((q_c)\) in the brucite-like layer can be calculated as:

\[
q_c = xe/(a^2\sin 60^\circ)
\]

where \(a\) is the lattice parameter in brucite-like layer, \(x\) is the molar ratio of \(M_3^{3+}/\(M_2^{2+}+M_3^{3+}\)\), and \(e\) is the charge of an electron.
We are assuming the system being calculated is composed of y anions, thus the area of layer (S_a) is:

$$S_a = \sqrt{3y}d_z^2/2 \quad (7)$$

For the sake of convenience, a hexagonal layer is considered a circular one.

Attraction energy between the anions and the adjacent layers can be calculated as:

$$U_a = -\frac{qqcN_A}{4\pi\varepsilon} \int_0^{2\pi} \int_0^{\pi} \frac{\sqrt{S_a/\pi}}{\sqrt{r^2 + d_z^2/4}}drd\theta \quad (8)$$

where d_z is the distance between the adjacent layers, which can be measured by XRD; N_A is Avogadro’s number.

Thus the total electrostatic interaction energy U of anions can be calculated by:

$$U = \sum U_{si} + \sum U_{ai} \quad (9)$$

In this model, both the interaction between the central anion and the layers and the interaction between the central anion and other anions are calculated. This can be explained by electric field superposition theory. Eq.(9) represents the electrostatic interaction from all the layers and anions with the central anion. The system being calculated is made up of 20 layers and 2107 anions per layer. The calculation is completed by computer due to complexity.

III. RESULTS AND DISCUSSION

A. Altering the cation ratio of layer

In order to discuss the interaction between layers and anions, anionic potential energy is expressed as a function of the charge density of the layer, the distance between adjacent layers, anionic charge and the distance between adjacent anions, $U = f(q_c, d_z, n, d_s)$. The lower the anionic electrostatic potential energy, the more stable the intercalated anion is.

From Eq.(4) and Eq.(6), q_c is directly related to x, while d_z has an inverse relation to x. q_c increases and d_z decreases with an increase in x. Thus, U_s increases and U_a decreases, which affects the total electrostatic interaction energy of anions (U). Structure parameters and anionic electrostatic potential energy of MgAl-CO$_3^{2-}$ are shown in Table I, where a and d_s are measured by experiment [8]. For the MgAl-CO$_3^{2-}$ ($x=0.20, 0.25, 0.33$), q_c is 2.43, 3.08 and 4.12 e/nm2, respectively, while the d_z is 0.97, 0.87 and 0.75 nm, respectively. The Electrostatic potential energy of intercalated CO$_3^{2-}$ is $-2106.1, -2330.3, -2586.8$ kJ/mol, respectively.
Lei reported that the decomposition temperature of intercalated CO$_3^{2-}$ of MgAl-LDHs decrease from 413 to 410 °C by TG-DTA when x was reduced from 0.33 to 0.20 [8]. Therefore, the stabilities of intercalated anions decrease with a decrease in the interaction of anions with layer, which is consistent with the calculation results.

B. Altering varieties of intercalated anions

Altering the varieties of intercalated anions results in little change to the lattice a. Given the value a is 0.306 nm, the structural parameters of Mg$_{0.75}$Al$_{0.25}$-LDHs and electrostatic potential energy of anions are more easily calculated. The value d_z depends on the experiment because anionic varieties have great influence on d_z.

From Eq.(4), d_z is directly related to anionic charges. For anions with different charges, it is expected that those with the highest charges will show the largest d_z values. This trend can be observed in Table I for the anions with Keggin structure, where the predicted order of d_z is followed: $\text{PW}_{11}\text{O}_{39}^{7-}$ \rightarrow $\text{PV}_2\text{W}_{10}\text{O}_{40}^{15-}$ \rightarrow $\text{PW}_{12}\text{O}_{40}^{13-}$. Nijs et al. reported the value d_z for [Mg$_{0.75}$Al$_{0.25}$][Fe(CN)$_6$]$^{3-}$ [9]. For example, d_z for $x=0.25$ is about 1.044 nm. From Table I or using Eq.(4), the estimated d_z is 1.07 nm, which agrees with Nijs’s result.

The qualitative analysis of anion exchange capacity of LDHs has widely been reported in the literature. However, there is no mention of ration exchange capacity. Overall, the lower the electrostatic potential energy of anion is, the more stable intercalated anion is, and the higher the anion exchange capacity is. From Table I, compared with simple anions, we can observe that the order of electrostatic potential energy: CO$_3^{2-}$ $<$ SO$_4^{2-}$ $<$ OH$^-$ $<$ F$^-$ $<$ Cl$^-$ $<$ Br$^-$ $<$ NO$_3^-$.

The calculation results are in agree with those reported by Miyata [10]. So, this model can be used to predict the anionic exchange capacity of hydrotalcites.

As the complex anions are intercalated into the hydrotalcites, the value d_z can be obtained by summation of the layer thickness (0.48 nm) and anionic dimension. Due to the value U from Table I, it is predicted that the stability of intercalated anions is: $\text{PW}_{11}\text{O}_{39}^{7-}$ \rightarrow $\text{V}_{10}\text{O}_{28}^{19-}$ \rightarrow $\text{H}_4\text{Co}_2\text{Mo}_{10}\text{O}_{38}^{6-}$ \rightarrow $\text{PV}_2\text{W}_{10}\text{O}_{40}^{5-}$ \rightarrow $\text{PW}_{11}\text{Fe}(\text{H}_2\text{O})\text{O}_{39}^{4-}$ \rightarrow $\text{Fe}(\text{CN})_6^{3-}$ \rightarrow $\text{PW}_{12}\text{O}_{40}^{3-}$.

IV. CONCLUSIONS

In this work, EPEM of LDHs was based upon the theory of crystallography. Anionic potential energy was expressed as a function of the charge density of a layer, the distance between the adjacent layers, the anionic charge and the distance between the adjacent anions, $U = f(q_z, d_z, n, d_z)$.

(i) The charge density of layer q_z increases and the distance between the adjacent layers d_z decreases with an increase in molar ratios of Al$^{3+}/(\text{Mg}^{2+} + \text{Al}^{3+})$. Thus, anionic electrostatic potential energy U decreases and the stability increases. Calculation results are consistent with anionic thermal stability reported elsewhere.

(ii) Varieties of intercalated anions influence anionic stabilities. Measured anionic potential energy U matches ion exchange capacity reported. This model is useful for predicting anionic stability of the hydrotalcites.

(iii) In this model, a layer of LDHs is considered as a whole and the interactions between atoms are ignored, allowing us to avoid the large computational burden of calculations involving quantum chemistry or molecule mechanics. Our work introduces new directions for study of the structure and properties of such layered materials.

V. ACKNOWLEDGMENT

This work was supported by Zhejiang Provincial Department of Science and Technology of China (No.2003c31023).