Potential Energy Function and Vertical Ionization Potential of \(\text{Se}_2^x(x = 0, -1, +1, +2) \)

Liu Xipinga,b, Li Guangda, Ran Minga,b

(Department Of Chemistry, Sichuan Normal University, Chengdu 610066; Hubei Institute for Nationalities, Enshi 445000)

Abstract Based on the atomic and molecular reaction statics, the ground electronic states for \(\text{Se}_2(3\Sigma_u) \), \(\text{Se}_2^+(2\Pi_u) \), \(\text{Se}_2^- (2\Pi_u) \) and \(\text{Se}_2^{2+} (1\Sigma_u) \) and the corresponding reasonable dissociative limits were derived. Using density functional method (B3LYP) and 6-311G** basis sets, the molecular equilibrium geometry and dissociation energy for \(\text{Se}_2^x(x = 0, +1, -1, +2) \) were calculated. Then, with Murrell-Sorbie function form, spectroscopic date for \(\text{Se}_2^x(x = 0, +1, -1, +2) \) were derived. The calculated results for \(B \), \(\alpha \), \(\omega \) and \(\omega \chi \) are 0.0790, 0.0002, 379.5760 and 0.9309 cm-1 respectively for \(\text{Se}_2 \), 0.0849, 0.0002, 464.0401, 0.9754 cm-1 respectively for \(\text{Se}_2^+ \), 0.0564, 0.0002, 323.0775 and 0.8482 cm-1 respectively for \(\text{Se}_2^- \); 0.1001, 0.0001, 603.4454 and 0.0299 cm-1 respectively for \(\text{Se}_2^{2+} \), which are in good agreement with experimental or calculated values in references. It shows that \(\text{Se}_2 \), \(\text{Se}_2^+ \), \(\text{Se}_2^- \) and \(\text{Se}_2^{2+} \) can be stable.

Key words \(\text{Se}_2^x(x = 0, -1, +1, +2) \), Potential energy function, Vertical ionization potential

1 引言

近年来含硒药物和富硒食品的开发研究十分活跃，但用量子力学研究其生物功能的微观机理报道很少。陈云清等人对 Mn/Se, MnO\textsubscript{2}/Se 体系形成团簇离子的质谱进行了研究[1], Heinemana 等人研究
2 计算方法

本工作采用 Gaussian98 程序，分别用 HF、B3LYP、QCISD 方法，在 6-31G、cc-PVDZ、LANL2DZ、6-311G** 水平基础上，对 Se_2^+ ($x = 0, -1, +1, +2$) 分子离子体系进行计算, 拟得到该分子离子体系量子力学的相关信息，计算结果见表 1。从表 1 可知，B3LYP/6-311G** 组合方法计算 Se_2^+ ($x = 0, -1, +1, +2$) 分子离子体系能量相对其它方法较低，平衡核间距 R_e 与相关文献值吻合较好，且计算所耗时间相对较短，因此，本工作以此方法研究 Se_2^+ ($x = 0, -1, +1, +2$) 分子离子体系。

表 1 基态 Se_2^+ ($x = 0, -1, +1, +2$) 分子离子用不同方法对不同基组的计算结果

<table>
<thead>
<tr>
<th></th>
<th>B3LYP</th>
<th>HF</th>
<th>QCISD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_e/nm</td>
<td>$E/$Hartree</td>
<td>R_e/nm</td>
</tr>
<tr>
<td>cc-PVDZ Se_2</td>
<td>0.2197</td>
<td>-4803.0173</td>
<td>0.2142</td>
</tr>
<tr>
<td>Se_2^+</td>
<td>0.2117</td>
<td>-4802.5930</td>
<td>0.2055</td>
</tr>
<tr>
<td>Se_2^-</td>
<td>0.2324</td>
<td>-4803.0019</td>
<td>0.2271</td>
</tr>
<tr>
<td>Se_2^{2+}</td>
<td>0.2062</td>
<td>-4802.2026</td>
<td>0.2108</td>
</tr>
<tr>
<td>LANL2DZ Se_2</td>
<td>0.2332</td>
<td>-18.4424</td>
<td>0.2269</td>
</tr>
<tr>
<td>Se_2^+</td>
<td>0.2243</td>
<td>-18.0882</td>
<td>0.2171</td>
</tr>
<tr>
<td>Se_2^-</td>
<td>0.2465</td>
<td>-18.5127</td>
<td>0.2402</td>
</tr>
<tr>
<td>Se_2^{2+}</td>
<td>0.2183</td>
<td>-17.4746</td>
<td>0.2098</td>
</tr>
<tr>
<td>6-31G Se_2</td>
<td>0.2281</td>
<td>-4798.3099</td>
<td>0.2220</td>
</tr>
<tr>
<td>Se_2^+</td>
<td>0.2194</td>
<td>-4797.9622</td>
<td>0.2124</td>
</tr>
<tr>
<td>Se_2^-</td>
<td>0.2412</td>
<td>-4798.3753</td>
<td>0.3161</td>
</tr>
<tr>
<td>Se_2^{2+}</td>
<td>0.2139</td>
<td>-4797.3576</td>
<td>0.2056</td>
</tr>
<tr>
<td>6-311G** Se_2</td>
<td>0.2200</td>
<td>-4803.1117</td>
<td>0.2137</td>
</tr>
<tr>
<td>Se_2^+</td>
<td>0.2113</td>
<td>-4802.7764</td>
<td>0.2052</td>
</tr>
<tr>
<td>Se_2^-</td>
<td>0.2325</td>
<td>-4803.1194</td>
<td>0.2259</td>
</tr>
<tr>
<td>Se_2^{2+}</td>
<td>0.2065</td>
<td>-4802.1886</td>
<td>0.1996</td>
</tr>
</tbody>
</table>

Experament value: $R_e(\text{Se}_2) = 0.2170$ nm6, $R_e(\text{Se}_2^-) = 0.2326 - 0.2346$ nm7.

3 $\text{Se}_2^+(x = 0, -1, +1, +2)$ 的离解极限

分子势能函数对应一定的电子状态，为了准确表达体系的势能函数，须首先确定正确的离解极限和可能的电子状态。根据原子分子静力学原理来确定离解极限和可能的电子状态。

用 B3LYP/6-311G** 方法 ab initio 计算优化给出 Se_2 分子($1, 3, 5$) 重态及 Se_2^- 的$(2, 4, 6)$ 重态、$\text{Se}_2^+(2, 4, 6)$ 重态、$\text{Se}_2^{2+}(1, 3, 5)$ 重态。优化结果列于表 2 和图 1，从表 2 和图 1 可知，Se_2 分子的基态为 $3\Sigma_g^+$，Se_2^- 和 Se_2^+ 的基态都是 $2\Pi_g$，Se_2^{2+} 的基态为 $1\Sigma_u^{-}$. 下面确定它们的离解通道。

从头计算给出 Se_2 的离解通道为：$\text{Se}_2 \rightarrow \text{Se} + \text{Se}$；对 Se_2 分子来说，其 Se 的基电子组态为 $4s^2 4p^4$,
基电子状态为 3P_g，根据原子分子反应静力学原理$^{[8]}$，Se$_2$ 同核分子属于 D$_{6h}$ 群，基态 $Se(3P_g)$ 分解为 D_{6h} 群表示的直和为：$3P_g$ 与 $3\Sigma^+_g$，从而组合 $3P_g + 3\Sigma^+_g$ 的直积并约化为：$3P_g$ 与 $3\Sigma^+_g$的直积并约化为：$(3\Sigma^+_g + 3\Pi_g) \times (3\Sigma^-_g + 3\Pi_g)$，所以基态 Se$_2$ 分子可能的电子态有：$1\Sigma^+_g, 3\Sigma^+_g, 5\Sigma^+_g, 1\Delta_g, 3\Delta_g, 5\Delta_g, 1\Sigma^-_g, 3\Sigma^-_g, 5\Sigma^-_g, 1\Pi_g, 3\Pi_g, 5\Pi_g$，在 6-311G** 水平基础上，用 B3LYP 方法计算优化给出 Se$_2$ 分子的电子组态为：

$$
\begin{align*}
\text{a)} & \quad \sigma_u \sigma_u \sigma_u \sigma_u \sigma_u \sigma_u \sigma_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \\
\text{b)} & \quad \sigma_u \sigma_u \sigma_u \sigma_u \sigma_u \sigma_u \sigma_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \pi_u \\
\end{align*}
$$

计算给出 Se$_2$ 分子的基态电子状态为 $^3\Sigma_g^-$，从表 2 和图 1 可知，$^3\Sigma_g$ 为 Se$_2$ 基态，$^1\Sigma_g$ 和 $^5\Sigma_g$ 均为激发态。因此，Se$_2$ 分子的离解极限为：

$$
Se(3P_g) = Se(3P_g) + Se(3P_g)
$$

对 Se$_2^-$，其可能的离解通道为：

$$
Se_2^- \rightarrow Se^- (2P_u) + Se(3P_g)
$$

Se$^-$ 的基电子组态为 $4s^2 4p^5$，基电子状态为 $2P_u$，同样，根据原子分子反应静力学原理，Se$^-$（$2P_u$）和 Se（$3P_g$）经过分解，直积和约化可得到 Se$_2^-$ 的可能电子状态有：$^2\Sigma_g^-, 2\Sigma_u^+, 2\Pi_u, 2\Delta_u$，考虑同核原子激发能交换，其电子状态还可能有：$^2\Sigma_u^-, 2\Sigma_g^-, 2\Pi_g, 2\Delta_g$。在 6-311G** 水平基础上，用

<table>
<thead>
<tr>
<th>State</th>
<th>Re/Å</th>
<th>E/Hartree</th>
<th>ν/cm^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^1\Sigma_g$</td>
<td>0.2200</td>
<td>-4803.0794</td>
<td>377.4212</td>
</tr>
<tr>
<td>$^3\Sigma_g$</td>
<td>0.2200</td>
<td>-4803.1118</td>
<td>779.553</td>
</tr>
<tr>
<td>$^5\Sigma_u$</td>
<td>0.2877</td>
<td>-4803.0342</td>
<td>163.2617</td>
</tr>
<tr>
<td>$^2\Pi_u$</td>
<td>0.2119</td>
<td>-4802.7764</td>
<td>436.8828</td>
</tr>
<tr>
<td>$^4\Sigma_u$</td>
<td>0.235</td>
<td>-4802.7282</td>
<td>313.6762</td>
</tr>
<tr>
<td>$^6\Sigma_u$</td>
<td>0.3218</td>
<td>-4802.6777</td>
<td>112.1839</td>
</tr>
<tr>
<td>$^2\Pi_u$</td>
<td>0.2325</td>
<td>-4803.1770</td>
<td>310.0479</td>
</tr>
<tr>
<td>$^4\Sigma_u$</td>
<td>0.2675</td>
<td>-4803.1194</td>
<td>184.6288</td>
</tr>
<tr>
<td>$^6\Sigma_u$</td>
<td>0.4488</td>
<td>-4802.7517</td>
<td>99.8904</td>
</tr>
<tr>
<td>$^2\Sigma_u^+$</td>
<td>0.2066</td>
<td>-4802.1886</td>
<td>472.2226</td>
</tr>
<tr>
<td>$^3\Sigma_g$</td>
<td>0.2292</td>
<td>-4802.1254</td>
<td>352.7976</td>
</tr>
<tr>
<td>$^5\Sigma_g$</td>
<td>0.2632</td>
<td>-4802.1171</td>
<td>214.7978</td>
</tr>
</tbody>
</table>

图 1 Se$_2^+(x = 0, -1, +1, +2)$ 分子离子的势能曲线

Fig. 1 Potential energy curves of Se$_2^+(x = 0, -1, +1, +2)$
B3LYP 方法计算优化(表 2, 图 1b),同时参考文献 2,3,4]．Se\(_2\)\(^{-}\) 分解为\(\Sigma_g\)电子状态时解离能最低，可知\(\Sigma_g\)为 Se\(_2\)\(^{-}\)的基电子状态．所以，基态 Se\(_2\)\(^{-}\)的解离极限为：

\[
\text{Se}_2(\Sigma_g) = \text{Se}^- (3\,\Pi_u) + \text{Se} (3\,\Pi_g)
\]

对 Se\(_2\)\(^{+}\)，其可能的解离通道为：Se\(_2\)\(^{+}\)→ Se\(^{+}\)(4\,\Pi_u) + Se (3\,\Pi_g)；Se\(^{+}\)的基电子组态为 4\,\Pi_u，基电子状态为 \(\Sigma_g\)，同样，根据原子分子反应静力学原理，Se\(_2\)\(^{+}\)(4\,\Pi_u)和 Se (3\,\Pi_g)经过分解、直积和约化可得到 Se\(_2\)\(^{+}\)可能电子状态有 \(2,4,6\,\Sigma_u^+\)、\(2,4,6\,\Pi_u\)，考虑核原子激发能交换，电子状态还可能有 \(2,4,6\,\Sigma_g^+\)、\(2,4,6\,\Pi_g\)。在 6-311G** 水平基础上，用 B3LYP 方法计算优化 (表 2, 图 1c) 可知，Se\(_2\)\(^{+}\)的 2 重态为其基态，根据文献 5] 得其基态电子状态为 \(\Sigma_g\)。所以，Se\(_2\)\(^{+}\)的解离通道为：

\[
\text{Se}_2(\Sigma_g) \rightarrow \text{Se}^{+} (4\,\Pi_u) + \text{Se} (3\,\Pi_g)
\]

对 Se\(_2\)\(^{+}\)，其可能的解离通道为：

\[
\begin{align*}
\text{Se}_2(\Sigma_g) & \rightarrow \text{Se}^{+} (4\,\Pi_u) + \text{Se} (3\,\Pi_g) \\
\text{Se}_2(\Sigma_g) & \rightarrow \text{Se}^{+} (4\,\Pi_u) + \text{Se} (3\,\Pi_g)
\end{align*}
\]

Se 的第一电离能为 9.752 eV，第二电离能为 21.19 eV，通道(2) 比通道(1) 电离能低 1.868 eV，通道(2) 优先于通道(1)，但由于能量差别不很大，因此两种解离通道都可能存在。同理，Se\(_2\)\(^{+}\)(4\,\Pi_u)，Se\(^{+}\)(4\,\Pi_u) 和 Se (3\,\Pi_g) 经过分解、直积和约化可得到 Se\(_2\)\(^{+}\)可能电子状态有 \(1,3,5\,\Sigma_g\)，考虑核原子激发能交换，其电子状态还可能有 \(1,3,5\,\Sigma_u\)。在 6-311G** 水平基础上，用 B3LYP 方法优化 (表 2, 图 1d) 可知，Se\(_2\)\(^{+}\)的 1 重态为其基态，计算优化给出 Se\(_2\)\(^{+}\)的基态电子状态为 \(\Sigma_u\)，所以 Se\(_2\)\(^{+}\)的解离通道为：

\[
\text{Se}_2(\Sigma_g) \rightarrow \text{Se}^{+} (4\,\Pi_u) + \text{Se} (3\,\Pi_g)
\]

4 Se\(_2\)\(^{+}\)(\(x = 0, +1, -1, +2\)) 的势能函数

由 \textit{ab initio} 计算得到 Se\(_2\)\(^{+}\)(\(x = 0, +1, -1, +2\)) 的各电子状态的一系列单点能值后，可见 Se\(_2\)、Se\(_2\)\(^{+}\)、Se\(_2\)\(^{-}\)和 Se\(_2\)\(^{2+}\)的势能曲线具有吸引区和排斥区，并有一个极小点，其对应分子的稳定的结构。这种势能曲线可用 M-S 势能函数 [6] 拟合。

\[
V = -D_c(1 + a_1\rho + a_2\rho^2 + a_3\rho^3)\exp(-a_4\rho)
\]

\[
\rho = R - R_0, \quad R_0 \text{ 为核间距，} R_0 \text{ 为平衡值。拟合结果见表 3 和图 2。根据拟合得到的参数可计算 Se\(_2\)、Se\(_2\)\(^{+}\)、Se\(_2\)\(^{-}\)和 Se\(_2\)\(^{2+}\)的力常数和光谱数据 (表 4)。}

\[
\begin{align*}
\text{表 3} & \text{ 基态 Se}_{2}\text{ 的 M-S 势能参数} \\
\text{表 4} & \text{ 基态 Se}_{2}\text{ 的} (\Sigma_g) 、 \text{ Se}_{2}\text{ 的} (\Pi_g) 、 \text{ Se}_{2}\text{ 的} (\Pi_g) 、 \text{ Se}_{2}\text{ 的} (\Sigma_g) \text{的几何,力学,光谱数据} \\
\end{align*}
\]

![图 2](attachment:image.png)
图1 a~c 的势能曲线均具有对应于分子稳定平衡结构的极小点,说明 S_{2}^{+} ($x = 0, +1, -1, +2$) 分子离子是稳定存在的。分子离子能否稳定存在与其离解通道有关。Se_2^+, Se_2^{2+} 和 Se_2^{-} 的离解通道分别为： $Se_2^+ \rightarrow Se(1P_g) + Se(3P_g)$, $Se_2^{2+} \rightarrow Se^+(4S_u) + Se(3P_g)$ 和 $Se_2^- \rightarrow Se^-(2P_u) + Se(3P_g)$, 两原子间只有存在化学键力和核排斥力,与一般的双原子分子一样, 势能曲线仅有一个极小点, 对应稳定的分子态。

由表 3 的离解能值可知, Se_2^{2+} 的离解能最大, Se_2^+ 的离解能最小, $Se_2^-(x = 0, +1, -1, +2$) 分子离子体系离解能依次为： $Se_2^{2+} > Se_2^+ > Se_2 > Se_2^-$. 根据 Se_2^+, Se_2^+, Se_2^- 的基电子组态来推知, Se_2 为 $4s^24p^4$, Se_2^+ 为 $4s^24p^3$, Se_2^- 为 $4s^24p^5$, Se_2^+ 最外层有三个价电子, 外层轨道处于半充满, 因此 Se_2^+ 的稳定性大于 Se_2 和 Se_2^-, 对于 Se_2^- 因存在离子间的相互斥力, 使体系势能增大, 所以较 Se_2^+ 稳定性降低, 结合计算所得 Se_2^+, Se_2^+, Se_2^- 的离解能值, 可初步断定 $Se_2^-(x = 0, +1, -1)$ 分子离子的稳定性是 $Se_2^+ > Se_2 > Se_2^-$. 而对 Se_2^{2+}, 除了存在化学键力和核排斥力外, 还存在正电荷对的库仑排斥力, 当化学键力和核排斥力达平衡时, 将出现能量极小点, 对应分子的稳定态, 而当化学键力和库仑排斥力达平衡时, 将出现能量极大点, 从计算结果可知 Se_2^{2+} 是化学键力和核排斥力达平衡, 有一能量的极小点, 因此 Se_2^{2+} 可以稳定存在。

5 $Se_2" (n = +1, +2)$ 的垂直电离势

按照垂直电离势(IV) 的定义, Se_2 分子电离成 Se_2^+ 为第一电离势[10]：

$$I^+ = E(Se_2^+) - E(Se_2) - E_0(Se_2) \quad (8)$$

而 Se_2 电离成 Se_2^{2+} 为第二电离势[10]：

$$I^{++} = E(Se_2^{2+}) - E(Se_2) - E_0(Se_2) \quad (9)$$

其中, $E(Se_2)$ 为 Se_2 分子在平衡位置 $R = R_e$ 时的能量; $E(Se_2^+)$ 为 Se_2^+ 的 $R = R_e$ 的能量; $E(Se_2^{2+})$ 为 Se_2^{2+} 的 $R = R_e$ 的能量; E_0 是 Se_2 分子的零点能, 由下式计算：

$$E_0(Se_2) = \frac{1}{2} \omega_e - \frac{1}{4} \omega_e \chi_e \quad (10)$$

$Se_2" (n = +1, +2)$ 离子的垂直电离势计算结果是：

$$E_0(Se_2) = 0.01238 \text{ eV}, \quad I^+ = 9.13928 \text{ eV}, \quad I^{++} = 25.13178 \text{ eV}.$$