颗粒弥散 \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \) 基
复合透氧膜材料的制备、结构与性能研究

李栋才, 刘卫**, 宋春林, 江国顺, 陈初升
（中国科学技术大学材料科学与工程系，合肥 230026）

摘要：通过外加等摩尔分数的 \(\text{ZrO}_2 \) 和适量 \(\text{BaO} \)，原位生成一定比例的 \(\text{BaZrO}_3 \) 基第二相颗粒复合的制备方法，由具有较高氧渗透率的 \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \) 颗粒，进行原位引入 \(\text{Ba}(\text{Sr})\text{Zr}(\text{CoFe})\text{O}_3 \) 第二相颗粒的改性研究。发现引入的第二相颗粒不仅具有抑制基底晶粒的生长、细化和均匀基底晶粒的作用，同时减小了基底高温氧渗透量而起到稳定相结构的作用。引入 \(5\% \) \(\text{ZrO}_2 \) 和 \(5\% \) 适量 \(\text{BaO} \) 复合物的抗弯强度比基相提高 \(68\% \) ；引入 \(10\% \) \(\text{ZrO}_2 \) 和 \(10\% \) 适量 \(\text{BaO} \)、\(20\% \) \(\text{ZrO}_2 \) 和 \(20\% \) 适量 \(\text{BaO} \) 的复合物（均为摩尔分数），在 \(850^\circ\text{C} \) 以下具有更高的氧渗透率；复合物的电导率随第二相颗粒含量的增加而减小；氧渗透量较小的复合物的载氧子浓度相对稳定，因而升温过程中电导率热回滞峰较小。

关键词： BSCF5582；颗粒复合；微结构；氧渗透；电导率
中图分类号： 0741.5 文献标识码： A

\(\text{Ba}(\text{Sr})\text{Zr}(\text{CoFe})\text{O}_3 \cdot \text{Particle-dispersed } \text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \)

\textbf{Mixed Conductor Composite *}

Li Dongcai, Liu Wei**, Song Chunlin, Jiang Guoshun, Chen Chusheng

（Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026）

\textbf{Abstract} Dense oxygen permeable membranes are expected to have great impact on oxygen production and oxygen-involved industrial processes. \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \) is of highest oxygen permeability at elevated temperatures. A novel composite ceramic preparation route for \(\text{Ba}_{0.5}\text{Sr}_{0.5}\text{Co}_{0.8}\text{Fe}_{0.2}\text{O}_{3-\delta} \) was developed by directly produced stable \(\text{BaZrO}_3 \)-based secondary phase particles (SPP) via addition of \(\text{ZrO}_2 \) and iso-molar excess \(\text{BaO} \), aiming at improving mechanical properties. It revealed that as-synthesized composites could get a well-developed and fine-grained microstructure, there being secondary phase particles as the grain growth inhibitor, and the mechanical properties and oxygen permeation are improved. For the composite with addition of \(10\% \) \(\text{ZrO}_2 \) + \(10\% \) \(\text{BaO} \), a well-developed and fine-grained microstructure has been obtained. Compared to the pure phase BSCF5582, the three-point bending strength of the composite with addition of \(5\% \) \(\text{ZrO}_2 \) + \(5\% \) \(\text{BaO} \) increases by \(68\% \) and its oxygen permeation rate is much higher below \(850^\circ\text{C} \) with the smaller apparent activation energy. Additionally, the electrical properties of the composites are also affected by the inclusion of SPP: conductivity decreases with the SPP content increasing, while the hysteresis of conductivity declines due to the relative stable carrier concentration.

\textbf{Keywords} BSCF5582, Particles dispersed, Microstructure, Oxygen permeation, Electrical conductivity

* Project supported by the National Natural Science Foundation of China (20371045).
** Corresponding author, Email: wliu@ustc.edu.cn Received 30 December 2003; in final form 1 April 2004.
1 引 言

同时具有氧离子-电子导电能力的无机致密混合导体型氧化物材料，其中因氧化物在氧化性或还原性介质中的氧化性能不同，氧离子的迁移能力不同。氧离子的迁移能力决定了材料的性能。氧离子的迁移能力不同对于材料的性能影响很大，氧离子的迁移能力不同，材料的性能也不同。氧离子的迁移能力不同对材料的性能影响很大，氧离子的迁移能力不同，材料的性能也不同。氧离子的迁移能力不同对材料的性能影响很大，氧离子的迁移能力不同，材料的性能也不同。氧离子的迁移能力不同对材料的性能影响很大，氧离子的迁移能力不同，材料的性能也不同。

2 实 验

2.1 样品的制备与表征

以金属离子的酸性盐和氧化物为原料，合成晶格的ZrO₂和BaO 全部合成 BaZrO₃ (BZ) 颗粒，制度了三种不同 BZ 含量的 BSCF5582-BZ 复合物 (BZ 摩尔分数分别为 5%、10%、20%，简称其样品 S5、S10、S20)。按 BSCF5582-BZ 化学计量比称取分析纯的 BaCO₃、SrCO₃、CoO₃、Fe₂O₃ 和 ZrO₂，在玛瑙研钵中初步研磨，然后在酒精介质中研磨混合 24 h。随后样品在 800°C 左右烘干后，分别于 850~950°C 和 950~1050°C 进行两次预烧，预烧后的粉末再在玛瑙研钵中充分研磨。最后采用单轴干压法制片，压力为 240 MPa。将制备好的片状 (1~2 mm 厚，直径 13 mm) 和条状 (6×2×4 mm³) 以 1.5°C/min 的速度升温至 1130~1230°C 并保温 10 h，然后以 1.5°C/min 的速度降至室温。

分别以几种方法和阿基米德法测试烧结样品的相对密度。所有试验样品的相对密度要求在 90% 以上。烧制好的样品用 X 射线衍射 (XRD) (D/max-RA，Japan) 方法进行结构分析; 采用扫描电镜 (SEM) (X-650，Japan) 和场发射扫描电子显微镜 (FESEM/ EDS)(JSM-6700F) 进行观察和微区成分分析。

2.2 性能测试

样品用高频性能测试采用条状样品，以 600 目 SiC 砂纸研磨，以便测量断口的几何尺寸。每种复合物测试五个样品。用岛津万能测试机 (Shimadzu DCS-5000) 测试条状样品的三点抗弯曲强度，跨距为 30 mm，加载速度为 0.5 mm/min。

利用自建的 O-TPD 光谱测量装置测量样品的氧脱附量。将相同摩尔数的样品 (2.5 mmol，约 0.5 g) 放入 U 型石英玻璃管内，在 1100°C 以纯氧处理 0.5 h 后，自然降温。然后以 10°C/min 从 100°C 升温到 1000°C，同时在石英管内通以 30 mL/min 的氢气作为吹扫气，脱附的氧被实时载入气相色谱 (Varian3400) 内做定量分析。

复合物和纯相 BSCF5582 氧渗透的测量方法详见文献 [12] 所述。所测试的样品均用 600 目的 SiC 砂纸磨制成统一厚度 (1.58 mm)。采用 Pyrex 玻璃管，在 1050°C 将片状封接在 Al₂O₃ 刚玉管的一端。片状的表面暴露在静态空气中，下表面与 He 气吹扫，下表面氧压保持在 1.47~1.67 kPa，测量的时间范围为 970~750°C。

使用 ZL5 型智能 LCR 交流阻抗测试仪和自动数据采集软件，采用经典的双端子法测量复合物和纯相 BSCF5582 样品的总电导。采用动态变温测量模式，升温速率设为 1.0°C/min，测量温度范围为 250~1000°C，样品的尺寸一般为 20×4×2 mm³。

3 结果与讨论

3.1 相结构与相组成

图 1 为烧结后 BSCF5582 基复合物样品的 XRD 图。比较纯相和 BaZrO₃ 的 XRD 图可以看出，该复合氧化物材料主要由 BSCF5582 基的相和 BZ 基的第二相组成。从烧结 S5 样品抛光表面的 FESEM 图可知，样品的相组成为 Ba₀.₆₁S₀.₃₉Zrᵢ.₇₆Co₁.₁₇F₀.₆₇O₁₄，其中的相组成为 Ba₀.₅₇S₀.₄₃C₀₂.₇₉ Fe₂O₃·₈O₁₄。XRD 图可以看出该样品相组成中 BSCF5582 复合氧化物与纯相 BSCF5582 含量相同。
图 1 烧结样品的 XRD 谱（#：第二相颗粒）
Fig. 1. The room-temperature XRD patterns of the sintered composite sample.

图 2 烧结样品 S5 抛光表面的 FESEM
Fig. 2. FESEM photograph of the polished surface of the sintered composite S5 sample.

图 3 烧结样品 BSCF5582(A)、S5(B)、S10(C) 和 S20(D) 表面的 SEM
Fig. 3. External surface SEM photographs of the pure phase BSCF5582(A), composite S5(B), S10(C) and S20(D), respectively, sintered for 10 h at 1130, 1150, 1160 and 1180℃.
晶的直径在 5～20 μm（图 3B），虽然晶粒的大小与纯相 BSCF5582 的晶粒相当，甚至有所增大约 (归因于烧结温度的相对提高 (表 13))，但晶粒相对发育完整，晶界不明显，分布均匀，气孔减少。这反映出 7.0% (体积分数) 第二相颗粒 SPP 还不足以完全抑制颗粒的生长，但有助于晶体的排除，优化致密化进程使其具有很高的相对密度。

表 1 给出了 SPP 颗粒弥散 BSCF5582 基复合物条状烧结样品的三点抗弯强度。从表 1 可以看出，S5 (7.0% SPP) 具有最大的三点抗弯强度 124 MPa，比基相提高了 68%。其增强机理可以理解为均匀扩散的 SPP 颗粒 (图 2) 徘徊造成的增强过程 [13]。在片状样品的氧渗透实验中，发现纯相在低温过程中多出现直线形裂纹，而颗粒复合物多为分叉式裂纹，这证实了颗粒增强的行为特征。但第二相 SPP 含量较多的复合物 S10、S20 的强度有所下降，这可能是因为颗粒尺寸及数量增大，导致微裂纹合并成大裂纹所致。

表 1 产物基相与第二相颗粒 SPP 的晶粒参数、体积含量、烧结条件、相对密度和三点抗弯强度

<table>
<thead>
<tr>
<th>Samples</th>
<th>Matrix phase lattice</th>
<th>SPP lattice α/Å</th>
<th>SPP volume content/%</th>
<th>Sintering temp. /℃</th>
<th>Relative density/%</th>
<th>3-point bending strength/MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSCF5582</td>
<td>3.9966</td>
<td>—</td>
<td>—</td>
<td>1130</td>
<td>92.3</td>
<td>74 ± 6</td>
</tr>
<tr>
<td>S5</td>
<td>3.9997</td>
<td>4.1698</td>
<td>7.0</td>
<td>1150</td>
<td>90.1</td>
<td>124 ± 8</td>
</tr>
<tr>
<td>S10</td>
<td>3.9966</td>
<td>4.1022</td>
<td>13.8*</td>
<td>1160</td>
<td>95.4</td>
<td>72 ± 6</td>
</tr>
<tr>
<td>S20</td>
<td>3.9975</td>
<td>4.1656</td>
<td>26.6*</td>
<td>1180</td>
<td>90.1</td>
<td>43 ± 5</td>
</tr>
</tbody>
</table>

* Supposing the matrix phase has the same composition as S5.

3.3 高温氧脱附性能

通过 O-TPD (oxygen temperature-controlled desorption) 技术，衡量透氧膜材料的高温氧脱附性能，是一种判断和筛选优良透氧膜材料的有效手段。如图 4 所示，纯 BSCF5582 存在 α、β、γ 三个脱氧峰。第一脱氧峰 α 在 230～500℃，第二脱氧峰 β 在 700～800℃，第三脱氧峰 γ 在 800～850℃。而 SPP 颗粒弥散 BSCF5582 复合物在对应于纯相脱氧峰，β 峰的脱氧峰消失，γ 峰明显趋于减小，但相比之下第一脱氧峰 (α 峰) 变化不大。文献 [4] 认为纯相 BSCF5582 的中温范围 (230～500℃) 氧脱附过程对氧 Fe³⁺/Co⁺ 被还原为 Fe²⁺/Co²⁺。β 峰和 γ 峰的同时出现在文献 [4] 中没有给出具体解释。本研究根据 O-TPD 技术研究氧脱附行为的特点，认为 230～500℃的 α 峰主要来源于样品在 1100℃的高温纯氧处理的过程中样品本征氧化空位“吸附”的氧；而较高温区的 β 峰和 γ 峰来源于晶格氧化的脱出。由于 Co=O 键强于 Fe=O 键强，认为 β 峰主要是来源于 Co 氧化的脱出，对应着 Co 价态的降低；γ 峰主要是来源于 Fe 氧化的脱出，对应着 Fe 价态的降低。对于颗粒弥散 BSCF5582 基复合物，随 SPP 含量的增加，β 峰消失，γ 峰逐渐减小。这表明了第二相颗粒 SPP 具有阻止或压制基相高温晶格氧析出和起到稳定晶格结构的作用。由于在 230～600℃大量的晶格氧空穴“附着”氧的放出，这使所有样品的第一脱氧峰看起来很小。

3.4 氧渗透

图 5 是 SPP 颗粒弥散 BSCF5582 复合物的氧渗透和温度的关系曲线 (850℃以上每个数据点平衡
时间在 2 h 以上，850℃以下每个数据点平衡时间为 10 h，样品的厚度均为 1.58 mm。从图 5 可以看出，在同一温度点处，850℃以上 BSCF5582 具有最大的氧渗透，而在 850℃以下 S5 具有最大的氧渗透。在高温段（970～850℃）样品的氧渗透表观活化能相差不大，这表明了两个相作用对基相的结构影响不大，但在低温段（850～750℃）纯相 BSCF5582 氧渗透表观活化能远大于复合物的表观活化能。纯相 BSCF5582 低温段具有较大氧渗透表观活化能是因为 BSCF5582 在 850℃以下缓慢的分解成 BaCoO2 和 SrCo9–8FeO3–8，氧渗透会随时间延长而下降。而复合物 S5、S10 在 850℃以下具有较小的表观活化能和较大的氧渗透，这表明第二相颗粒 SPP 使复合物中基相具有更稳定的相结构，起到抑制基相的低温相分解的作用。这与复合物在此温度范围表现的较小氧传输行为是统一的。SPP 对基相低温相分解的稳定作用还需要进一步研究，初步分析认为由于两相热膨胀及弹性模量的差异，在降温过程中结构稳定的 SPP 颗粒对基相 BSCF5582 晶格的应力作用抑制了基相低温相分解趋势。

从图 6 可以看出，在同一温度处纯相 BSCF5582 具有最大的电导率，断相 BSCF5582 复合物比较，从 400～550℃存在较大的回滞峰，在 S5 存在最大的回滞峰，而 S20 两个回滞峰几乎同时消失，结合纯相和 BSCF5582 复合物氧脱附过程（图 4），升温过程中在 400～550℃，800～1000℃形成的峰可以解释为空穴载流子的迁移率与温度的升高加大和脱氧反应 2H⁺ + O₂⁻ → V⁺⁺ + 1/2O₂↑ 发生造成的空穴载流子浓度的减少的综合作用结果；降温过程形成的峰是升温过程的逆过程，这是由于氧还原 V⁺⁺ + 1/2O₂↓ → 2H⁺ + O₂⁻ 造成的空穴载流子浓度的增加和空穴载流子的迁移率随温度的降低而减少的综合作用结果。回滞峰的形成是由于在升温过程中，在同一温度 T 处的升温过程（T ～ 1000℃）的总放氧量大于降温过程（1000℃ ～ T）的总吸氧量，即在温度 T 处升温过程样品的氧含量大于降温过程中样品的氧含量，因此，前者的空穴载流子浓度大，电导率高。对于 S5 样品在 800～1000℃存在最大的回滞峰可以解释为：在升温过程中，SPP 抑制氧的放出，空穴载流子浓度相对稳定，所以随温度升高，电导率升高很快，直到相对较高的温度氧浓度的放出；电导率开始下降；而在降温过程中，弥散的第二相 SPP 颗粒阻止氧的吸入，空穴载流子浓度增加缓慢，直到相对较低的温度氧浓度的吸入，电导率开始升高，这与 S5 样品的 O-TPD（图 4）测试结果是一致的，即第二相氧峰 β 消失，第三相氧峰 γ 最大，这种氧气在升温过程中放出和吸入的温度区间上的较大差别，造成 S5 样品在 800～1000℃
存在最大的回滞峰。随着 SPP 的增加，复合物样品的氧脱附峰逐渐减小（图4），因此，样品的氧含量或空穴载流子浓度在升降温过程中相对稳定，所以回滞峰减小。

4 结 论

通过掺入 ZrO₂ 和等摩尔过量的 BaO 制备了均匀分散的 Ba(Sr)Zr(CoFe)O₅ 第二相颗粒复合 BSCF₅₅₈₂ 基质氧化膜材料。引入的第二相颗粒抑制基相晶粒的生长，细化和均匀了基相晶粒，同时减小了基相高温氧脱附量从而起到稳定相结构的作用。S5 复合物的抗弯强度比纯相提高 68%；S10、S20 复合物在 850℃以下具有更高的氧渗透率；复合物的电导率随第二相颗粒含量的增加而减小；氧脱附量较小的复合物的载流子浓度相对稳定，升降温过程中电导率热回滞峰较小。

参考文献