引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 989次   下载 404 本文二维码信息
码上扫一扫!
分享到: 微信 更多
氧化石墨烯负载的Pt单原子催化硼胺烷水解机理的理论研究
吴 红,罗其全,张瑞奇,张文华*,杨金龙*
1.中国科学技术大学合肥微尺度物质科学国家研究中心,合肥 230026;2.中国科学技术大学,中国科学院能量转换材料重点实验室,合肥 230026;3.中国科学技术大学量子信息与量子科技前沿协同创新中心,合肥 230026;4.澳洲国立大学物理与工程研究学院应用数学系,堪培拉 2600
摘要:
本文研究了氧化石墨烯负载Pt单原子(Pt1/Gr-O)催化硼胺烷(NH3BH3)全水解反应机理,即一分子的NH3BH3生成三分子的氢气(H2)的过程. 在水解路径中,首先吸附的硼胺烷连续断裂两个B-H键生成第一分子的H2. 接着,一个H2O分子与*BHNH3基团(*表示吸附态)反应生成*BH(H2O)NH3,其中伸长的O-H键断裂后形成*BH(OH)NH3. 然后,第二个H2O与*BH(OH)NH3反应生成*BH(OH)(H2O)NH3,在指向Pt1/Gr-O表面的O-H断裂后,生成BH(OH)2NH3并脱附到水溶液中. 两个水分子脱氢产生的两个H原子脱附生成第二个H2分子,且Pt1/Gr-O催化剂恢复. 脱附后的BH(OH)2NH3在水溶液中水解生成第三个H2分子. 纵观整个水解反应,H2O分子和*BHNH3基团的结合是反应速控步,其反应能垒是16.1 kcal/mol. 因此,Pt1/Gr-O有希望成为室温催化NH3BH3全水解催化剂.
关键词:  密度泛函理论,单原子催化,Pt,氧化石墨烯,硼胺烷水解
DOI:10.1063/1674-0068/31/cjcp1804063
分类号:
基金项目:
Single Pt Atoms Supported on Oxidized Graphene as a Promising Catalyst for Hydrolysis of Ammonia Borane
Hong Wu1, Qi-quan Luo1, Rui-qi Zhang1, Wen-hua Zhang*2,3,4, Jin-long Yang*5,3
1.Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Tech-nology of China, Hefei 230026, China;2.Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;3.Synergetic Innovation Center of Quantum Information Quantum Physics, University of Science and Technology of China, Hefei 230026, China;4.Department of Applied Mathematics, School of Physics and Engineering, Australian National University, Canberra, ACT 2600, Australia;5.Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Abstract:
Based on density functional theory calculations, the full hydrolysis of per NH3BH3 molecule to produce three hydrogen molecules on single Pt atoms supported on oxidized graphene (Pt1/Gr-O) is investigated. It is suggested that the first hydrogen molecule is produced by the combination of two hydrogen atoms from two successive B-H bonds breaking. Then one H2O molecule attacks the left ?BHNH3 group (? represents adsorbed state) to form ?BH(H2O)NH3 and the elongated O-H bond is easily broken to produce ?BH(OH)NH3. The second H2O molecule attacks ?BH(OH)NH3 to form ?BH(OH)(H2O)NH3 and the breaking of O-H bond pointing to the plane of Pt1/Gr-O results in the desorption of BH(OH)2NH3. The second hydrogen molecule is produced from two hydrogen atoms coming from two H2O molecules and Pt1/Gr-O is recovered after the releasing of hydrogen molecule. The third hydrogen molecule is generated by the further hydrolysis of BH(OH)2NH3 in water solution. The rate-limiting step of the whole process is the combination of one H2O molecule and ?BHNH3 with an energy barrier of 16.1 kcal/mol. Thus, Pt1/Gr-O is suggested to be a promising catalyst for hydrolysis of NH3BH3 at room temperature.
Key words:  Density functional theory, Single atom catalysis, Platinum, Oxidized graphene, Ammonia borane hydrolysis
附件