引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 236次   下载 128  
分享到: 微信 更多
Coherent spin transport through a six-coordinate FeN6 spin-crossover complex with two different spin configurations
李群祥
作者单位E-mail
李群祥 中国科学技术大学 化学物理系 liqun@ustc.edu.cn 
摘要:
Due to the magnetic bistability, single-molecule spin-crossover (SCO) complexes have been considered to be the most promising building blocks for molecular spintronic devices. Here, we explore the SCO behavior and coherent spin transport properties of a six-coordinate FeN6 complex with the low-spin (LS) and high-spin (HS) states by performing extensive first-principles calculations combined with non-equilibrium Green’s function technique. Theoretical results show that the LS$HS spin transition via changing the metal-ligand bond lengths can be realized by external stimuli, such as under light radiation in experiments. According to the calculated zero-bias transmission coefficients and density of states as well as the I-V curves under small bias voltages of FeN6 SCO complex with the LS and HS states sandwiched between two Au electrodes, we find that the examined molecular junction can act as a molecular switch, tuning from the OFF (LS) state to the ON (HS) state. Moreover, the spin-down electrons govern the current of the HS molecular junction, and this observed perfect spin-filtering effect is not sensitive to the detailed anchoring structure. These theoretical findings highlight this examined six-coordinate FeN6 SCO complex for potential applications in molecular spintronics.
关键词:  Transport, molecular switch, spin-filtering, Electronic structure, First-principles
DOI:
分类号:
基金项目:
Coherent spin transport through a six-coordinate FeN6 spin-crossover complex with two different spin configurations
李群祥
Abstract:
Due to the magnetic bistability, single-molecule spin-crossover (SCO) complexes have been considered to be the most promising building blocks for molecular spintronic devices. Here, we explore the SCO behavior and coherent spin transport properties of a six-coordinate FeN6 complex with the low-spin (LS) and high-spin (HS) states by performing extensive first-principles calculations combined with non-equilibrium Green’s function technique. Theoretical results show that the LS$HS spin transition via changing the metal-ligand bond lengths can be realized by external stimuli, such as under light radiation in experiments. According to the calculated zero-bias transmission coefficients and density of states as well as the I-V curves under small bias voltages of FeN6 SCO complex with the LS and HS states sandwiched between two Au electrodes, we find that the examined molecular junction can act as a molecular switch, tuning from the OFF (LS) state to the ON (HS) state. Moreover, the spin-down electrons govern the current of the HS molecular junction, and this observed perfect spin-filtering effect is not sensitive to the detailed anchoring structure. These theoretical findings highlight this examined six-coordinate FeN6 SCO complex for potential applications in molecular spintronics.
Key words:  Transport, molecular switch, spin-filtering, Electronic structure, First-principles