引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 669次   下载 483 本文二维码信息
码上扫一扫!
分享到: 微信 更多
2'-脱氧鸟苷在水溶液中激发态氢键动力学的密度泛函理论研究
李东霖,李慧,杨勇刚,刘玉芳*
作者单位E-mail
李东霖 河南师范大学物理与电子工程学院新乡453007  
李慧 河南师范大学物理与电子工程学院新乡453007  
杨勇刚 河南师范大学物理与电子工程学院新乡453007  
刘玉芳* 河南师范大学物理与电子工程学院新乡453007 yf-liu@htu.cn 
摘要:
用密度泛函理论和含时密度泛函理论研究了2'-脱氧鸟苷在水溶液中形成的一水和二水复合物在基态和激发态的氢键性质.计算了两种复合物的稳定构型、红外光谱、前沿分子轨道以及密里根电荷等光物理参数.结果表明,两种水合物的分子内氢键在光激发下变化不一致,分子间氢键变化相似.一水复合物的分子内氢键N3···H4-O2 在激发态是加强的,二水复合物的是减弱的.两种水合物的分子间氢键N2-H2···O3和O3-H5···O2及O3···H7-O4和H5···O1-C1在激发态全是减弱的.两种复合物红外光谱的计算结果与实验值一致.二水复合物中分子间氢键O4···H1-N1在激发态断裂,形成了新的分子间氢键O4···H3-N2,这种变化可能与鸟嘌呤部分的结构弯曲有关.最后分析了一水和二水复合物分子的分子内电子转移特性.
关键词:  水合物,断裂,含时密度泛函理论,硬度,氢键动力学
DOI:10.1063/1674-0068/28/cjcp1504086
分类号:
基金项目:
TDDFT Study on Excited-State Hydrogen Bonding of 2'-Deoxyguano-sine in H2O Solution
Dong-lin Li,Hui Li,Yong-gang Yang,Yu-fang Liu*
Abstract:
The mono and dihydrated complexes of 2'-deoxyguanosine have been used to elucidate the importance of the 2'-hydroxy group in the hydration. Density functional theory and time-dependent density functional theory methods were performed to investigate the ground-and excited-state hydrogen bonding properties of 2'-deoxyguanosine-water (2'-dG-W) and 2'-deoxyguanosine-2water (2'-dG-2W). Infrared spectra, geometric optimizations, frontier molecular orbitals and Mulliken charges have also been studied. The results demonstrated that the excited-state intramolecular hydrogen bonding dynamics of complexes 2'-dG-W and 2'-dG-2W behaves differently upon photoexcitation, while their intermolecular hydro-gen bonding dynamics behaves similarly. Moreover, the significant weakening of the inter-molecular hydrogen bond O4···H1?N1 and the formation of the new strong hydrogen bond O4···H3?N2 in the 2'-dG-2W upon photoexcitation were due to the geometric structure bending of guanine and the rigidity of related molecules. In addition, the charge transfer properties were theoretically investigated by analysis of molecular orbital.
Key words:  Hydrate, Time-dependent density functional theory, Rigidity, Hydrogen bond-ing dynamics