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In this work, we discussed the stochastic thermodynamics of mesoscopic electron transfer
reactions between ions and electrodes. With a relationship between the reaction rate con-
stant and the electrode potential, we find that the heat dissipation βq equals to the dynamic
irreversibility of the reaction system minus an internal entropy change term. The total en-
tropy change ∆st is defined as the summation of the system entropy change ∆s and the heat
dissipation βq such that ∆st=∆s+βq. Even though the heat dissipation depends linearly
on the electrode potential, the total entropy change is found to satisfy the fluctuation theo-
rem ⟨e−∆st⟩=1, and hence a second law-like inequality reads ⟨∆st⟩≥0. Our study provides a
practical methodology for the stochastic thermodynamics of electrochemical reactions, which
may find applications in biochemical and electrochemical reaction systems.
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I. INTRODUCTION

Stochastic thermodynamics (ST) has been a very ac-
tive field in the modern statistic physics [1–4]. The
fluctuations could be significant in mesoscopic systems,
and hence various thermodynamic properties such as
work, heat, and system entropy become stochastic vari-
ables [5–8]. One can introduce the system entropy s
and the heat dissipation q or equivalently the medium
entropy change ∆sm=βq to characterize a stochastic
system. A very important result from ST is that the
total entropy change defined as ∆st=∆s+∆sm may sat-
isfy the fluctuation theorem ⟨e−∆st⟩=1, which leads to
a second-law-like inequality ⟨∆st⟩≥0. Such a physical
picture has been revealed in dissipative systems with
Newtonian dynamics [9–12], the underdamped or over-
damped Brownian particles [13–17] and the quantum
systems [18, 19].

As a special case of the birth-death stochastic pro-
cesses, chemical reactions have gained considerable at-
tentions. In general, the state of a reaction system
is described by the number vector X of active species
X, which could vary according to the reaction events.
When the transition rates W±ρ(X) for a forward and a
backward reaction are identified, the probability p(X; t)
of variable X evolves according to a master equation.
Note that the heat dissipation of a reaction system is
known to have very subtle relationship with the transi-
tion rates [8, 20], a careful treatment of the heat dissipa-
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tion is necessary. Previous studies on reaction network

with elementary reactions
∑
i

riρXi

∑
i

piρXi demon-

strate that the heat dissipation βq can be related to

the quantity Σ=
∑
i

ln
Wρi

W−ρi

, so that the total entropy

change ∆st=∆s+βq would satisfy the fluctuation the-
orem [21, 22]. A key intermediate step to prove this
relation is to use the relationship between the equilib-
rium constant and the chemical potential of the reactant
and product species, which can either be found from the
rate theory of gas phase reactions [23] or from the self-
consistent thermodynamics constraints [22]. ST of sim-
ple reactions has been successfully applied to chemical
reactions which are far away from equilibrium [24–29].

In this study, we focus on the electrochemical reac-
tions where the electrons are transferred between ions
and electrodes, and hence the electrode potential ψ
plays a role. One may note that the electron trans-
fer reactions have wide applications in sensing devices
[30–32]. To the best of our knowledge, the effect of
electric potential is not explicitly addressed in the pre-
vious studies of ST, so it would be useful to see how
to incorporate the electrode potential into the ST of
electrochemical reactions. Specifically, based on the
constraints from thermodynamic self-consistency or the
Marcus’ theory of electron tranfer reactions [33–36], a
relation between the equilibrium constant and the elec-
trode potential ψ is found. With this relation, we dem-
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onstrate that Σ=
∑
i

ln
Wρi

W−ρi

equals to the heat dissipa-

tion βq minus an entropy change of the active species,
so that the total entropy change defined as ∆st=∆s+βq
satisfies the fluctuation theorem ⟨e−∆st⟩=1 and the sec-
ond law reads ⟨∆st⟩≥0. For a reaction system with
given propensity functions {W±ρ}, the heat dissipation
βq depends explicitly on the electrode potential as well
as the internal entropy of the reactive species. When
the electrode potential and the internal entropy of the
system are not specified, βq is not well defined while the
total entropy change ∆st can be uniquely determined.
Our finding implies that the ST of electron transfer re-
actions can be treated in the same way as ST of reac-
tions without electron transfer.

In this work, a model electrochemical reaction sys-
tem is first introduced. ST of electrochemical reactions
is shown in a thermodynamic relationship between the
reaction rate constant and the electrode potential is pre-
sented and the fluctuation theorem is discussed.

II. MODEL OF THE MESOSCOPIC
ELECTROCHEMICAL SYSTEMS

Consider a model electrochemical reaction system
with fixed volume V . The reaction system contacts to
a heat bath with temperature T , and then the reduced
inverse temperature can be defined as β=1/kBT . As an
illustrative example, we consider an electrochemical re-
action between an ion species Y and an electrode with
electric potential ψ

Y 
 X + e−(electrode) (1)

where Y=An+ and X=A(n+1)+ are the active species.
Denote X and Y as the particle numbers of the X
species and Y species. In the dilute limit, the reac-
tion rate for elemental reactions satisfies the mass ac-
tion law, where the reaction rates for the forward and
backward reactions are given by [23]

W+(X) = k+Y

W−(X) = k−X
(2)

where k+ and k− are the reaction constant for the
forward and backward reaction. The rate constant
K=k+/k− for electron transfer reactions is known to
depend on the chemical potential of X and Y as well
as electrode potential ψ [33, 36]. In the following sec-
tion we will show that a simple relationship between the
equilibrium constant K and the electrode potential ψ
can be worked out.

The Y species is assumed to contact to a particle
reservoir with chemical potential µY and hence keeps
its particle number fixed. Denote the probability dis-
tribution of the intermediate species X as p(X; t). The
evolution of p(X; t) is governed by the master equation

as

∂tp(X; t) =
∑
ρ=±

[Wρ(X− vρ)p(X− vρ; t)−

Wρ(X)p(X; t)] (3)

where v+=1 and v−=−1 are the stoichiometric coeffi-
cients of X species for the forward and backward re-
actions, i.e., the particle number changes from X to
X+v+ or X+v− given a forward or a backward reaction
happens. In the long time limit, the system could reach
a stationary distribution ps(X)=p(X; t→∞), such that
∂tps(X)=0.

III. STOCHASTIC THERMODYNAMICS IN THE
SINGLE TRAJECTORY LEVEL

A. Single trajectory and dynamic irreversibility

For the reaction system, the reaction events change
the state variable of the system and hence generate a
stochastic trajectory. Denote Xj≡X(t′′=tj) as the par-
ticle number of species X at time t′′=tj . A forward
trajectory χ(t) consisted of n concessive reactions is de-
fined as

χ(t) = {X0(t
′′ = t0) → X1(t

′′ = t1) → ...→

Xn−1(t
′′ = tn−1) → Xn(t

′′ = tn) →

Xn(t
′′ = t)}

its conjugate backward trajectory χR(t) is defined as

χR(t) = {Xn(t
′′ = t′0) → Xn−1(t

′′ = t′1) → ...→

X1(t
′′ = t′n−1) → X0(t

′′ = t′n) → X0(t
′′ = t)}

τj=tj−tj−1 and τ ′j=t
′
j−t′j−1 are two time interval

parameters. The conjugate condition requires that
τj=τ

′
n+1−j . According to the Gillespie’s method [37,

38], the conditional probability to find such a trajec-
tory or its conjugated one reads

P [χ(t)|X0] = Πn
j=1e

−r(Xj−1)τj
Wρj (Xj−1)

r(Xj−1)

e−r(Xn)(t−tn) (4)

P [χR(t)|Xt] = Πn
j=1e

−r(Xj−1)τj
W−ρj (Xj)

r(Xj−1)

e−r(Xn)(t−tn) (5)

where r(Xi)=
∑
ρ=±

Wρ(Xi) is the total propensity func-

tion. With the log ratio of those two probabilities, one
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can introduce a dynamic irreversibility term Σ as

Σ ≡ ln
P [χ(t)|X0]

P [χR(t)|Xt]

=
n∑

j=1

ln
Wρj

(Xj−1)

W−ρj (Xj)
(6)

For the simple reaction systems, the dynamic irre-
versibility Σ differs from βq by a term which depends
on the degeneracy of particles [22], and the averaged

change rate ⟨Σ̇⟩ can be related to the entropy produc-
tion defined as the product of the thermodynamic flux
and the thermodynamic force [21]. In the following
part, we will show that such relations are also valid
for the reaction systems with electron transfer.

B. Energy balance in the single trajectory level

In order to study the energetics of the reac-
tion system, we consider the thermodynamic proper-
ties. The chemical potential µi for the i -th active
species with particle number Ni can be expressed as
βµi(Ni)=βµ

∗
i+lnNi, where βµ

∗
i is the chemical poten-

tial of a reference state [23]. The entropy si and the
internal energy ϵi of the species i are connected via the
thermodynamic relation βϵi=βµi+si [23].

Denote A(X) as the free energy of the reaction sys-
tem in state X. After a reaction of the ρj-th kind, the
state varies from Xj−1 to Xj=Xj−1+vρj , then the free

energy change β∆Aj , the internal entropy change ∆Sj
0

and the internal energy change ∆U j for the reaction
system reads

β∆Aj = vρj [βµ
∗
X + ln (Xj−1 + vρj )] (7)

∆Sj
0 = vρjsX (8)

β∆U j = β∆Aj +∆Sj
0 (9)

In order to keep the particle number of Y of the reaction
system unchanged, the amount of chemical work done
by particle reservoirs is as the following

βwj
chem = −uρjβµY

= −uρj (βµ
∗
Y + lnY) (10)

where u+=−1 and u−=1 are the stoichiometric coeffi-
cients of Y species for the forward and backward reac-
tions. The electric work by the electrode reads

βwj
ele = vρje0ψ (11)

where e0 is the elemental charge.
Since the temperature T of the reaction system is

fixed during the reaction process, the amount of en-
ergy βwj

chem+βw
j
ele−∆U j should be released to the

heat bath as heat dissipation βqj , so the energy bal-
ance equation can be written as

βqj = βwj
chem + βwj

ele − β∆U j (12)

Along a single trajectory which consists of n reactions,

the heat dissipation βq≡
n∑

j=1

βqj reads

βq = −
n∑

j=1

[uρjβµ
∗
Y + vρjβµ

∗
X + vρje0ψ]

−
n∑

j=1

[uρj lnY+ vρj ln (Xj−1 + vρj )]

−
n∑

j=1

∆Sj
0 (13)

which implies that the heat dissipation has a linear de-
pendence on the electrode potential.

C. Dynamic-thermodynamic relation

Herein we demonstrate that the heat dissipation βq
could be related to the dynamic irreversibility Σ based
on the constraints from macroscopic equilibrium sys-
tem. Denote the equilibrium concentration of species
X and Y as xs and y:

xs ≡ lim
V→∞

X

V
(14)

y ≡ lim
V→∞

Y

V
(15)

The zero current condition in the equilibrium system is:

k+y− k−xs = 0 (16)

or equivalently:

lnK = ln
k+
k−

= ln
xs

y
(17)

The electric potential equilibrium condition reads:

βµX(xsV )− βµY (yV ) + e0ψ = 0 (18)

or equivalently:

u+βµ
∗
Y + v+βµ

∗
X + v+e0ψ = − ln

xs

y
(19)

By comparing these two constraints, one can find that

lnK ≡ ln
k+
k−

= −(u+βµ
∗
Y + v+βµ

∗
X + v+e0ψ) (20)

One may note that it is possible to derive this equa-
tion in a different way, e.g., one can use the reaction
rate constant k± from Marcus’ theory of electron trans-
fer [33, 36] to derive Eq.(14). With Eq.(2), Eq.(6),
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Eq.(13) and Eq.(20), it is straightforward to prove that

βq =
n∑

j=1

ln
Wρj (Xj−1)

W−ρj (Xj)
−

n∑
j=1

∆Sj
0

= Σ−∆S (21)

∆S0 ≡
∑
j

∆Sj
0 (22)

where ∆S0 is the internal entropy change along the tra-
jectory. Eq.(21) implies that the heat dissipation equals
to the dynamic irreversibility minus the internal entropy
change of the reaction system.

D. Entropy balance and the fluctuation theorem

For the reaction system along the single trajectory
χ(t), one should note that the stochastic system entropy
s(t) consists of an internal entropy contribution S0 and
the Shannon entropy contribution− ln[p(Xt; t)] [20, 21],
i.e.,

s = S0 − ln[p(Xt; t)] (23)

The system entropy change can then be evaluated as

∆s = ∆S0 + ln
p(X0, t0)

p(Xt; t)
(24)

When the internal entropy term is evaluated analyti-
cally from the grand canonical ensemble, one can find
that ∆S0 reduces to the degeneracy entropy term intro-
duced by Schmiedl and Seifert [20, 22]. As one can see,
the reactive species which contact with particle reser-
voir would not contribute to the system entropy change
as their particle numbers are constants during the reac-
tions.

Using Eq.(21) and Eq.(24), the total entropy change
∆st defined as ∆st≡∆s+βq can be rewritten as

∆st = Σ+ ln
p(X0, t0)

p(Xt, t)

= ln
P (χ)

P (χR)
(25)

According to Eq.(25), the total entropy change is equal
to the log ratio of the probability of a forward trajec-
tory to that of a conjugate backward trajectory. Then
following the standard procedure in the stochastic ther-
modynamics [3, 22], it is straightforward to prove that
∆st satisfies the fluctuation theorem as

⟨e−∆st⟩ = 1 (26)

and then the second law of thermodynamics follows as
⟨∆st⟩≥0.

As one can see, the propensity function {Wρ(X)} is
insufficient to define a chemical reaction system with

unique thermodynamic properties, i.e., chemical reac-
tion systems with fixed {Wρ(X)} may have different
internal entropy {si} and different chemical potential
{µ∗

i }. According to Eq.(21) and Eq.(25), these sys-
tems would have different heat dissipation βq and the
same total dissipation ∆st. Even though the heat dis-
sipation βq does depend on the electrode potential ψ,
the dynamic-thermodynamic relations βq=Σ−∆S0 and
the fluctuation theorem ⟨e−∆st⟩=1 are still valid. Our
study implies that the ST of electrochemical reactions
can be treated in the same way as ST of simple reac-
tions. Note that the mass action law is the starting
point of this study and is known to be valid for dilute
reactants, one can expect that our theory is at least ap-
plicable to dilute solutions. For concentrated solutions
where the mass action law fails, the ST of reactions
remains an open question and deserves further investi-
gations.

IV. CONCLUSIONS

In this study, we discussed the stochastic thermody-
namics of electrochemical reactions, where the electrode
potential plays a role. We find a relationship between
the reaction constant K=k+/k− and the electrode po-
tential ψ. With such a relationship, one can discuss the
energy balance in stochastic trajectory level, where the
heat dissipation βq is found to be equal to the log ratio
of the conditional probabilities for a forward and a back-
ward trajectory minus an internal entropy change term.
Even though the heat dissipation βq has a linear depen-
dence on the electrode potential ψ, the total entropy
change ∆st=∆s+βq satisfies the fluctuation theorem
⟨e−∆st⟩=1 and is similar to the case of simple reactions
without electron transfer. Our study provides a practi-
cal methodology for the stochastic thermodynamics of
mesoscopic electron transfer reactions, which may find
applications in small biochemical and electrochemical
reaction systems.
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