Hang Hu, Charles H. Wolstenholme, Xin Zhang, Xiaosong Li. Inverted Solvatochromic Stokes Shift in GFP-like Chromophores with Extended Conjugation[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 599-607. doi: 10.1063/1674-0068/31/cjcp1806160
Citation: Hang Hu, Charles H. Wolstenholme, Xin Zhang, Xiaosong Li. Inverted Solvatochromic Stokes Shift in GFP-like Chromophores with Extended Conjugation[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 599-607. doi: 10.1063/1674-0068/31/cjcp1806160

Inverted Solvatochromic Stokes Shift in GFP-like Chromophores with Extended Conjugation

doi: 10.1063/1674-0068/31/cjcp1806160
  • Received Date: 2018-06-26
  • Chromophore structures inspired by natural green fluorescent protein (GFP) play an important role in the field of bio-imaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermodynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.
  • 加载中
  • [1] R. Y. Tsien, Annu. Rev. Biochem. 67, 509(1998).
    [2] M. Zimmer, Chem. Rev. 102, 759(2002).
    [3] E. A. Rodriguez, R. E. Campbell, J. Y. Lin, M. Z. Lin, A. Miyawaki, A. E. Palmer, X. K. Shu, J. Zhang, and R. Y. Tsien, Trends Biochem. Sci. 42, 111(2017).
    [4] C. L. Walker, K. A. Lukyanov, I. V. Yampolsky, A. S. Mishin, A. S. Bommarius, A. M. Duraj-Thatte, B. Azizi, L. M. Tolbert, and K. M. Solntsev, Curr. Opin. Chem. Biol. 27, 64(2015).
    [5] M. S. Baranov, K. A. Lukyanov, A. O. Borissova, J. Shamir, D. Kosenkov, L. V. Slipchenko, L. M. Tolbert,I. V. Yampolsky, and K. M. Solntsev, J. Am. Chem. Soc. 134, 6025(2012).
    [6] A. Baldridge, S. R. Samanta, N. Jayaraj, V. Ramamurthy, and L. M. Tolbert, J. Am. Chem. Soc. 133, 712(2011).
    [7] D. E. Williams, E. A. Dolgopolova, P. J. Pellechia, A. Palukoshka, T. J. Wilson, R. Tan, J. M. Maier, A. B. Greytak, M. D. Smith, J. A. Krause, and N. B. Shustova, J. Am. Chem. Soc. 137, 2223(2015).
    [8] C. Carayon, A. Ghodbane, L. Gibot, R. Dumur, J. H. Wang, N. Saffon, M. P. Rols, K. M. Solntsev, and S. Fery-Forgues, Small 12, 6602(2016).
    [9] A. Baldridge, S. H. Feng, Y. T. Chang, and L. M. Tolbert, ACS Comb. Sci. 13, 214(2011).
    [10] J. S. Paige, K. Y. Wu, and S. R. Jaffrey, Science 333, 642(2011).
    [11] G. F. Feng, C. Luo, H. B. Yi, L. Yuan, B. Lin, X. Y. Luo, X. X. Hu, H. H. Wang, C. Y. Lei, Z. Nie, and S. Z. Yao, Nucleic Acids Res. 45, 10380(2017).
    [12] Y. Liu, C. H. Wolstenholme, G. C. Carter, H. B. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Y. Du, L. Bai, X. S. Li, and X. Zhang, J. Am. Chem. Soc. 140, 7381(2018).
    [13] R. Ando, H. Hama, M. Yamamoto-Hino, H. Mizuno, and A. Miyawaki, Proc. Natl. Acad. Sci. USA 99, 12651(2002).
    [14] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623(1994).
    [15] M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265(1984).
    [16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, Montgomery, Jr., J. A., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision A.03. Wallingford CT:Gaussian Inc., (2016).
    [17] S. Miertuš, E. Scrocco, and J. Tomasi, Chem. Phys. 55, 117(1981).
    [18] R. Cammi and J. Tomasi, J. Comput. Chem. 16, 1449(1995).
    [19] E. Cancès, B. Mennucci, and J. Tomasi, J. Chem. Phys. 107, 3032(1997).
    [20] V. Barone, M. Cossi, and J. Tomasi, J. Comput. Chem. 19, 404(1998).
    [21] J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999(2005).
    [22] F. Lipparini, G. Scalmani, B. Mennucci, E. Cancs, M. Caricato, and M. J. Frisch, J. Chem. Phys. 133, 014106(2010).
    [23] B. Mennucci, WIREs Comput. Mol. Sci. 2, 386(2012).
    [24] D. M. Chipman, J. Chem. Phys. 112, 5558(2000).
    [25] D. M. Chipman, J. Chem. Phys. 131, 014103(2009).
    [26] G. E. McDuffie Jr., R. G. Quinn, and T. A. Litovitz, J. Chem. Phys. 37, 239(1962).
    [27] G. Abbandonato, G. Signore, R. Nifosì, V. Voliani, R. Bizzarri, and F. Beltram, Eur. Biophys. J. 40, 1205(2011).
    [28] N. G. Bozhanova, M. S. Baranov, K. S. Sarkisyan, R. Gritcenko, K. S. Mineev, S. V. Golodukhina, N. S. Baleeva, K. A. Lukyanov, and A. S. Mishin, ACS Chem. Biol. 12, 1867(2017).
    [29] C. M. Megley, L. A. Dickson, S. L. Maddalo, G. J. Chandler, and M. Zimmer, J. Phys. Chem. B 113, 302(2009).
    [30] K. Nienhaus and G. U. Nienhaus, J. Phys. Condens. Mat. 28, 443001(2016).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(615) PDF downloads(403) Cited by()

Proportional views
Related

Inverted Solvatochromic Stokes Shift in GFP-like Chromophores with Extended Conjugation

doi: 10.1063/1674-0068/31/cjcp1806160

Abstract: Chromophore structures inspired by natural green fluorescent protein (GFP) play an important role in the field of bio-imaging. In this work, photochemical properties of a new class of GFP-like chromophores are investigated using computational approaches. Thermodynamically stable isomers are identified in vacuum and in solvent. Spectral Stokes shifts are computed and compared to experiments. An inverted solvatochromic shift between absorption and emission emerging in this new class of GFP-like chromophores is observed, and attributed to the stabilized charge transfer and inhibited rotational structural reorganization in solvent.

Hang Hu, Charles H. Wolstenholme, Xin Zhang, Xiaosong Li. Inverted Solvatochromic Stokes Shift in GFP-like Chromophores with Extended Conjugation[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 599-607. doi: 10.1063/1674-0068/31/cjcp1806160
Citation: Hang Hu, Charles H. Wolstenholme, Xin Zhang, Xiaosong Li. Inverted Solvatochromic Stokes Shift in GFP-like Chromophores with Extended Conjugation[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 599-607. doi: 10.1063/1674-0068/31/cjcp1806160
Reference (30)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return