Meng-kai Feng, Zhong-huai Hou. Mode-Coupling Theory for Glass Transition of Active-Passive Binary Mixture[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 584-594. doi: 10.1063/1674-0068/31/cjcp1806148
Citation: Meng-kai Feng, Zhong-huai Hou. Mode-Coupling Theory for Glass Transition of Active-Passive Binary Mixture[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 584-594. doi: 10.1063/1674-0068/31/cjcp1806148

Mode-Coupling Theory for Glass Transition of Active-Passive Binary Mixture

doi: 10.1063/1674-0068/31/cjcp1806148
  • Received Date: 2018-06-21
  • Collective behaviours of active particle systems have gained great research attentions in recent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an effective Smoluchowski equation, which governs the dynamics of the probability distribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective diffusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xA. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.
  • 加载中
  • [1] T. Vicsek and A. Zafeiris, Phys. Rep. 517, 71(2012).
    [2] M. C. Marchetti. J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. D. Rao, and R. A. Simha, Rev. Mod. Phys. 85, 1147(2013).
    [3] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006(2016).
    [4] V. Schaller, C. Weber, C. Semmrich, E. Frey, and A. R. Bausch, Nature 467, 73(2010).
    [5] Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chat, and K. Oiwa, Nature 483, 48(2012).
    [6] J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M. E. Cates, D. Marenduzzo, A. N. Morozov, and W. C. K. Poon, Proc. Nat. Acad. Sci. USA 109, 4052(2012).
    [7] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108, 235702(2012).
    [8] I. Buttinoni, J. Bialk, F. Kmmel, H. Löwen, C. Bechinger, and T. Speck, Phys. Rev. Lett. 110, 238301(2013).
    [9] R. Wittkowski, A. Tiribocchi, J. Stenhammar, R. J. Allen, D. Marenduzzo, and M. E. Cates, Nat. Commun. 5, 4351(2014).
    [10] S. K. Das, S. A. Egorov, B. Trefz, P. Virnau, and K. Binder, Phys. Rev. Lett. 112, 198301(2014).
    [11] R. Ni, M. A. Cohen Stuart, and M. Dijkstra, Nat. Commun. 4, 2704(2013).
    [12] G. Szamel, E. Flenner, and L. Berthier, Phys. Rev. E 91, 062304(2015).
    [13] E. Flenner, G. Szamel, and L. Berthier, The Nonequilibrium Glassy Dynamics of Self-Propelled Particles, arXiv preprint arXiv:1606.00641(2016).
    [14] Z. Ma, Q. L Lei, and R. Ni, Mobility Induced Demixing in the Mixtures of Passive and Eccentric Active Brownian Particles, arXiv preprint arXiv:1706.00202(2017).
    [15] M. E. Cates and E. Tjhung, J. Fluid Mech. 836, P1(2018).
    [16] R. Wittmann, J. M. Brader, A. Sharma, and U. M. B. Marconi, Phys. Rev. E 97, 012601(2018).
    [17] S. N. Weber, C. A. Weber, and E. Frey, Phys. Rev. Lett. 116, 058301(2016).
    [18] J. Stenhammar, R. Wittkowski, D. Marenduzzo, and M. E. Cates, Phys. Rev. Lett. 114, 018301(2015).
    [19] L. Berthier and J. Kurchan, Nat. Phys. 9, 310(2013).
    [20] S. Mandal, S. Lang, M. Gross, M. Oettel, D. Raabe, T. Franosch, and F. Varnik, Nat. Commun. 5, 4435(2014).
    [21] L. Berthier, Phys. Rev. Lett. 112, 220602(2014).
    [22] A. Sharma, R. Wittmann, and J. M. Brader, Phys. Rev. E 95, 012115(2017).
    [23] V. Krakoviack, Phys. Rev. Lett. 94, 065703(2005).
    [24] G. M. Whitesides and B. Grzybowski, Science 295, 2418(2002).
    [25] A. Liluashvili, J. Ónody, and T. Voigtmann, Phys. Rev. E 96, 062608(2017).
    [26] M. K. Feng and Z. H. Hou, Soft Matter 13, 4464(2017).
    [27] R. F. Fox, Phys. Rev. A 34, 4525(1986).
    [28] R. F. Fox, Phys. Rev. A 33, 467(1986).
    [29] T. F. F. Farage, P. Krinninger, and J. M. Brader, Phys. Rev. E 91, 042310(2015).
    [30] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Amsterdam:Elsevier, (1990).
    [31] T. Voigtmann, Europhys. Lett. 96, 36006(2011).
    [32] X. L. Wu and A. Libchaber, Phys. Rev. Lett. 84, 3017(2000).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(566) PDF downloads(441) Cited by()

Proportional views
Related

Mode-Coupling Theory for Glass Transition of Active-Passive Binary Mixture

doi: 10.1063/1674-0068/31/cjcp1806148

Abstract: Collective behaviours of active particle systems have gained great research attentions in recent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an effective Smoluchowski equation, which governs the dynamics of the probability distribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective diffusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xA. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.

Meng-kai Feng, Zhong-huai Hou. Mode-Coupling Theory for Glass Transition of Active-Passive Binary Mixture[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 584-594. doi: 10.1063/1674-0068/31/cjcp1806148
Citation: Meng-kai Feng, Zhong-huai Hou. Mode-Coupling Theory for Glass Transition of Active-Passive Binary Mixture[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 584-594. doi: 10.1063/1674-0068/31/cjcp1806148
Reference (32)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return