Qiang Zhang, Yang Du, Chen Chen, Wei Zhuang. Rotational Mechanism of Ammonium Ion in Water and Methanol[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 568-574. doi: 10.1063/1674-0068/31/cjcp1806144
Citation: Qiang Zhang, Yang Du, Chen Chen, Wei Zhuang. Rotational Mechanism of Ammonium Ion in Water and Methanol[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 568-574. doi: 10.1063/1674-0068/31/cjcp1806144

Rotational Mechanism of Ammonium Ion in Water and Methanol

doi: 10.1063/1674-0068/31/cjcp1806144
  • Received Date: 2018-06-18
  • Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of ammoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorientation dynamics of NH4+ is faster in its aqueous solution than in methanol, which deviates from the Stokes-Einstein-Debye rule since water has higher viscosity than methanol. To address this intriguing issue, we herein study the reorientation dynamics of ammonium ion in both solutions using numerical simulation and an extended cyclic Markov chain model. An evident decoupling between translation and rotation of methanol is observed in simulation, which results in the deviation of reorientation from the Stokes-Einstein-Debye rule. Slower hydrogen bond (HB) switchings of ammonium with methanol comparing to that with water, due to the steric effect of the methyl group, remarkably retards the jump rotation of ammonium. The observations herein provide useful insights into the dynamic behavior of ammonium in the heterogeneous environments including the protein surface or protein channels.
  • 加载中
  • [1] O. Ninnemann, J. C. Jauniaux, and W. B. Frommer, EMBO J. 13, 3464(1994).
    [2] U. Ludewig, N. von Wirén, and W. B. Frommer, J. Biol. Chem. 277, 13548(2002).
    [3] P. E. Mason, J. Heyda, H. E. Fischer, and P. Jungwirth, J. Phys. Chem. B 114, 13853(2010).
    [4] S. Wang, E. A. Orabi, S. Baday, S. Bernèche, and G. Lamoureux, J. Am. Chem. Soc. 134, 10419(2012).
    [5] I. Mouro-Chanteloup, S. Cochet, M. Chami, S. Genetet, N. Zidi-Yahiaoui, A. Engel, Y. Colin, O. Bertrand, and P. Ripoche, PLoS One 5, e8921(2010).
    [6] I. D. Weiner and J. W. Verlander, Am. J. Physiol. Renal Physiol. 306, F1107(2014).
    [7] R. Moberg, F. Bokman, O. Bohman, and H. O. G. Siegbahn, J. Am. Chem. Soc. 113, 3663(1991).
    [8] T. L. Anderson, A. J. Charlson, S. E. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg, Science 300, 1103(2003).
    [9] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, New York:Oxford University Press, (1987).
    [10] P. Debye, Polar Molecules, New York:Dover, (1945).
    [11] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, London:Academic, (1986).
    [12] C. L. Perrin and R. K. Gipe, Science 238, 1393(1987).
    [13] Y. Masuda, J. Phys. Chem. A 105, 2989(2001).
    [14] Y. Masuda, J. G. Guevara-Carrion, J. Vrabec, and H. Hasse, J. Chem. Phys. 134, 074508(2011).
    [15] S. Pařez and M. Předota, Phys. Chem. Chem. Phys. 14, 3640(2012).
    [16] O. A. Karim and A. D. J. Haymet, J. Chem. Phys. 93, 5961(1990).
    [17] (a) T. Chang and L. X. Dang, J. Chem. Phys. 118, 8813(2003). (b) L. X. Dang, Chem. Phys. Lett. 213, 541(1993).
    [18] G. Szasz, W. O. Riede, and K. Heinzinger, Z. Naturforsch. A 34, 1083(1979).
    [19] W. L. Jorgensen and J. Gao, J. Phys. Chem. 90, 2174(1986).
    [20] K. P. Jensen and W. L. Jorgensen, J. Chem. Theory Comput. 2, 1499(2006).
    [21] (a) F. Bruge, M. Bernasconi, and M. Parrinello, J. Am. Chem. Soc. 121, 10883(1999). (b) F. Bruge, M. Bernasconi, and M. Parrinello, J. Chem. Phys. 110, 4734(1999).
    [22] E. Kassab, E. M. Evleth, and Z. D. Hamou-Tahra, J. Am. Chem. Soc. 112, 103(1990).
    [23] W. I. Babiaczyk, S. Bonella, L. Guidoni, and G. Ciccotti, J. Phys. Chem. B 114, 15018(2010).
    [24] (a) D. Laage and J. T. Hynes, Science 311, 832(2006). (b) D. Laage and J. T. Hynes, J. Phys. Chem. B 112, 14230(2008).
    [25] D. Laage, G. Stirnemann, F. Sterpone, R. Rey, and J. T. Hynes, Annu. Rev. Phys. Chem. 62, 395(2011).
    [26] D. Laage, T. Elsaesser, and J. T. Hynes, Chem. Rev. 117, 10694(2017).
    [27] (a) Q. Zhang, T. Wu, C. Chen, S. Mukamel, and W. Zhuang, Proc. Natl. Acad. Sci. USA 114, 10023(2017). (b) Q. Zhang, H. Chen, T. Wu, T. Jin, R. Zhang, Z. Pan, J. Zheng, Y. Gao, and W. Zhuang, Chem. Sci. 8, 1429(2017).
    [28] Q. Zhang, Z. Pan, L. Zhang, R. Zhang, Z. Chen, T. Jin, T. Wu, X. Chen, and W. Zhuang, WIREs Comput. Mol. Sci. (2018). DOI: 10.1002/wcms.1373
    [29] (a) Q. Zhang, C. Cheng, X. Zhang, and D. Zhao, Acta Phys. Chim. Sin. 31, 1461(2015). (b) X. Zhang, Q. Zhang, and D. Zhao, Acta Phys. Chim. Sin. 27, 2547(2011).
    [30] G. Stirnemann, E. Wernersson, P. Jungwirth, and D. Laage, J. Am. Chem. Soc. 135, 11824(2013).
    [31] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269(1987).
    [32] W. L. Jorgensen and J. Gao, J. Phys. Chem. 90, 2174(1986).
    [33] S. K. Pattanayak and S. Chowdhuri, J. Mol. Liq. 186, 98(2013).
    [34] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4, 435(2008).
    [35] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Hauk, J. Chem. Phys. 81, 3684(1984).
    [36] T. Darden and D. York, Pedersen, J. Chem. Phys. 98, 10089(1993).
    [37] M. G. Mazza, N. Giovambattista, F. W. Starr, and H. E. Stanley, Phys. Rev. Lett. 96, 057803(2006).
    [38] S. Kammerer, W. Kob, and R. Schilling, Phys. Rev. E 56, 5450(1997).
    [39] M. Ekimova, W. Quevedo, L. Szyc, M. Iannuzzi, P. Wernet, M. Odelius, and E. T. J. Nibbering, J. Am. Chem. Soc. 139, 12773(2017).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(662) PDF downloads(381) Cited by()

Proportional views
Related

Rotational Mechanism of Ammonium Ion in Water and Methanol

doi: 10.1063/1674-0068/31/cjcp1806144

Abstract: Dynamics of ammonium and ammonia in solutions is closely related to the metabolism of ammoniac compounds, therefore plays an important role in various biological processes. NMR measurements indicated that the reorientation dynamics of NH4+ is faster in its aqueous solution than in methanol, which deviates from the Stokes-Einstein-Debye rule since water has higher viscosity than methanol. To address this intriguing issue, we herein study the reorientation dynamics of ammonium ion in both solutions using numerical simulation and an extended cyclic Markov chain model. An evident decoupling between translation and rotation of methanol is observed in simulation, which results in the deviation of reorientation from the Stokes-Einstein-Debye rule. Slower hydrogen bond (HB) switchings of ammonium with methanol comparing to that with water, due to the steric effect of the methyl group, remarkably retards the jump rotation of ammonium. The observations herein provide useful insights into the dynamic behavior of ammonium in the heterogeneous environments including the protein surface or protein channels.

Qiang Zhang, Yang Du, Chen Chen, Wei Zhuang. Rotational Mechanism of Ammonium Ion in Water and Methanol[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 568-574. doi: 10.1063/1674-0068/31/cjcp1806144
Citation: Qiang Zhang, Yang Du, Chen Chen, Wei Zhuang. Rotational Mechanism of Ammonium Ion in Water and Methanol[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 568-574. doi: 10.1063/1674-0068/31/cjcp1806144
Reference (39)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return