Hong Gong, Arif Ullah, LvZhou Ye, Xiao Zheng, YiJing Yan. Quantum Entanglement of Parallel-Coupled Double Quantum Dots: a Theoretical Study Using the Hierarchical Equations of Motion Approach[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 510-516. doi: 10.1063/1674-0068/31/cjcp1806138
Citation: Hong Gong, Arif Ullah, LvZhou Ye, Xiao Zheng, YiJing Yan. Quantum Entanglement of Parallel-Coupled Double Quantum Dots: a Theoretical Study Using the Hierarchical Equations of Motion Approach[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 510-516. doi: 10.1063/1674-0068/31/cjcp1806138

Quantum Entanglement of Parallel-Coupled Double Quantum Dots: a Theoretical Study Using the Hierarchical Equations of Motion Approach

doi: 10.1063/1674-0068/31/cjcp1806138
  • Received Date: 2018-06-11
  • Quantum dots comprise a type of quantum impurity system. The entanglement and coherence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-motion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.
  • 加载中
  • [1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge:Cambridge University Press, (2000).
    [2] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Nature 528, 77(2015).
    [3] N. J. Cerf and C. Adami, Phys. Rev. Lett. 79, 5194(1997).
    [4] E. Cocchi, L. A. Miller, J. H. Drewes, C. F. Chan, D. Pertot, F. Brennecke, and M. Köhl, Phys. Rev. X 7, 031025(2017).
    [5] H. A. Engel, L. Kouwenhoven, D. Loss, and C. Marcus, Quantum Inf. Process. 3, 115(2004).
    [6] Y. Okazaki, S. Sasaki, and K. Muraki, Phys. Rev. B 84, 161305(2011).
    [7] S. Amasha, A. Keller, I. Rau, A. Carmi, J. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604(2013).
    [8] D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, and M. Kastner, Nature 391, 156(1998).
    [9] C. A. Büsser and F. Heidrich-Meisner, Phys. Rev. Lett. 111, 246807(2013).
    [10] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120(1998).
    [11] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070(1999).
    [12] C. H. Bennett and D. P. DiVincenzo, Nature (London) 404, 247(2000).
    [13] T. Hatano, M. Stopa, and S. Tarucha, Science 309, 268(2005).
    [14] A. Ramšak, J. Mravlje, R. Žitko, and J. Bonča, Phys. Rev. B 74, 241305(2006).
    [15] H. Johannesson, D. F. Mross, and E. Eriksson, Mod. Phys. Lett. B 25, 1083(2011).
    [16] J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703(2008).
    [17] X. Zheng, J. Jin, and Y. Yan, New. J. Phys. 10, 093016(2008).
    [18] X. Zheng, J. S. Jin, S. Welack, M. Luo, and Y. J. Yan, J. Chem. Phys. 130, 164708(2009).
    [19] X. Zheng, Y. Yan, and M. Di Ventra, Phys. Rev. Lett. 111, 086601(2013).
    [20] D. Hou, S. K. Wang, R. L. Wang, L. Z. Ye, R. X. Xu, X. Zheng, and Y. J. Yan, J. Chem. Phys. 142, 104112(2015).
    [21] L. Ye, D. Hou, X. Zheng, Y. Yan, and M. Di Ventra, Phys. Rev. B 91, 205106(2015).
    [22] L. Ye, X. Zheng, Y. Yan, and M. Di Ventra, Phys. Rev. B 94, 245105(2016).
    [23] L. Z. Ye, X. L. Wang, D. Hou, R. X. Xu, X. Zheng, and Y. J. Yan, Wires. Comput. Mol. Sci. 6, 608(2016).
    [24] P. W. Anderson, Phys. Rev. 124, 41(1961).
    [25] J. Chen, A. Chang, and M. Melloch, Phys. Rev. Lett. 92, 176801(2004).
    [26] J. Von Neumann, Mathematisch-Physikalische Klasse 1927, 273(1927).
    [27] C. E. Shannon, ACM SIGMOBILE Mobile Compt. Comm. Rev. 5, 3(2001).
    [28] A. Rényi, On Measures of Entropy and Information, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1:Contributions to the Theory of Statistics, Berkeley, California:University of California Press, (1961).
    [29] S. Goldstein and J. L. Lebowitz, Physica D 193, 53(2004).
    [30] C. E. Shannon, Bell Labs Tech. J. 28, 656(1949).
    [31] A. Daley, H. Pichler, J. Schachenmayer, and P. Zoller, Phys. Rev. Lett. 109, 020505(2012).
    [32] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277(2010).
    [33] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502(2008).
    [34] Z. H. Li, N. H. Tong, X. Zheng, D. Hou, J. H. Wei, J. Hu, and Y. J. Yan, Phys. Rev. Lett. 109, 266403(2012).
    [35] L. Pan, Y. D. Wang, Z. H. Li, J. H. Wei, and Y. J. Yan, J. Phys.:Condens. Matter 29, 025601(2016).
    [36] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022(1997).
    [37] S. Keßler, I. P. McCulloch, and F. Marquardt, New J. Phys. 15, 053043(2013).
    [38] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865(2009).
    [39] R. Horodecki and M. Horodecki, Phys. Rev. A 54, 1838(1996).
    [40] F. A. Bovino, G. Castagnoli, A. Ekert, P. Horodecki, C. M. Alves, and A. V. Sergienko, Phys. Rev. Lett. 95, 240407(2005).
    [41] W. G. Van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1(2002).
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(682) PDF downloads(592) Cited by()

Proportional views
Related

Quantum Entanglement of Parallel-Coupled Double Quantum Dots: a Theoretical Study Using the Hierarchical Equations of Motion Approach

doi: 10.1063/1674-0068/31/cjcp1806138

Abstract: Quantum dots comprise a type of quantum impurity system. The entanglement and coherence of quantum states are significantly influenced by the strong electron-electron interactions among impurities and their dissipative coupling with the surrounding environment. Competition between many-body effects and transfer couplings plays an important role in determining the entanglement among localized impurity spins. In this work, we employ the hierarchical-equations-of-motion approach to explore the entanglement of a strongly correlated double quantum dots system. The relation between the total system entropy and those of subsystems is also investigated.

Hong Gong, Arif Ullah, LvZhou Ye, Xiao Zheng, YiJing Yan. Quantum Entanglement of Parallel-Coupled Double Quantum Dots: a Theoretical Study Using the Hierarchical Equations of Motion Approach[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 510-516. doi: 10.1063/1674-0068/31/cjcp1806138
Citation: Hong Gong, Arif Ullah, LvZhou Ye, Xiao Zheng, YiJing Yan. Quantum Entanglement of Parallel-Coupled Double Quantum Dots: a Theoretical Study Using the Hierarchical Equations of Motion Approach[J]. Chinese Journal of Chemical Physics , 2018, 31(4): 510-516. doi: 10.1063/1674-0068/31/cjcp1806138
Reference (41)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return